Environmental Condition and Monitoring

  • Yuri HosokawaEmail author
  • Andrew J. Grundstein
  • Jennifer K. Vanos
  • Earl R. Cooper


The ambient environment (i.e., weather conditions) can significantly impact one’s ability to thermoregulate, particularly when exercising in environmentally stressful conditions where an imbalance between metabolic heat production and heat dissipation from the body is not adequately regulated. Empirical, direct, and rational heat indices have been developed by scientists to gauge the degree of heat strain one may experience in a range of thermal conditions. These measures are applied in athletic, military, and occupational settings to provide guidance on physical activity and/or clothing modifications that mitigate the risk of experiencing exertional heat illness. This chapter will provide an overview of common heat indices in physical activity settings and highlight the benefits and drawbacks of each index in practical applications. Lastly, the chapter will provide a case example from the Georgia High School Association in developing a set of weather-based activity modification guidelines based on an empirical study of football players’ heat injuries.


Heat balance Wet bulb globe temperature Heat index Humidex Environmental stress index Heat stress index Physiological strain index Thermal work limit Universal thermal comfort index Activity modification 


  1. 1.
    Sawka MN, Wenger CB, Pandolf KB. Thermoregulatory responses to acute exercise-heat stress and heat acclimation. Compr Physiol. 2011.Google Scholar
  2. 2.
    Kenney WL, Wilmore J, Costill D. Physiology of sport and exercise. 6th ed. Champaign, IL: Human Kinetics; 2015.Google Scholar
  3. 3.
    Vanos JK, Warland JS, Kenny NA, Gillespie TJ. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol. 2010;54(4):319–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Ind Health. 2006;44(3):388–98.CrossRefPubMedGoogle Scholar
  5. 5.
    Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303–11; discussion 312–3.PubMedGoogle Scholar
  6. 6.
    Brotherhood JR. Heat stress and strain in exercise and sport. J Sci Med Sport. 2008;11(1):6–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Macpherson RK. The assessment of the thermal environment. A review. Br J Ind Med. 1962;19(3):151–64.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Budd GM. Wet-bulb globe temperature ({WBGT})—its history and its limitations. J Sci Med Sport. 2008;11(1):20.CrossRefPubMedGoogle Scholar
  9. 9.
    Parsons K. Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance: CRC Press; 2014.Google Scholar
  10. 10.
    de Freitas CR, Grigorieva EA. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int J Biometeorol. 2017;61(3):487–512.CrossRefPubMedGoogle Scholar
  11. 11.
    Yaglou CP, Minard D. Control of heat casualties at military training centers. AMA Arch Ind Health. 1957;16(4):302–16.PubMedGoogle Scholar
  12. 12.
    ACSM. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia, PA: Lippincott Williams Wilkins; 2006.Google Scholar
  13. 13.
    Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Casa DJ, Armstrong LE, Kenny GP, O’Connor FG, Huggins RA. Exertional heat stroke: new concepts regarding cause and care. Curr Sports Med Rep. 2012;11(3):115–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Steadman RG. The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J Appl Meteorol. 1979;18(7):861–73.CrossRefGoogle Scholar
  16. 16.
    DeMartini JK, Casa DJ, Belval LN, Crago A, Davis RJ, Jardine JJ, et al. Environmental conditions and the occurrence of exertional heat illnesses and exertional heat stroke at the Falmouth Road Race. J Athl Train. 2014;49(4):478–85.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    New York Public High Schools Athletic Association. Heat index procedures. [cited 2016 Sep 8].
  18. 18.
    Oregon School Activities Association. Heat index policy [Internet]. [cited 2016 Sep 8].
  19. 19.
    Masterton JM, Richardson FA. Humidex: a method of quantifying human discomfort due to excessive heat and humidity. Downsview , ON: Ministere de l’Environnement; 1979. 45 p.Google Scholar
  20. 20.
    Rothfusz LP. The heat index “equation” (or more than you ever wanted to know about the heat index). NWS Technical Attachment SR. 1990;9023:2.Google Scholar
  21. 21.
    Perron AD, Brady WJ, Custalow CB, Johnson DM. Association of heat index and patient volume at a mass gathering event. Prehospital Emerg Care. 2005;9(1):49–52.CrossRefGoogle Scholar
  22. 22.
    Moran DS, Pandolf KB, Shapiro Y, Heled Y, Shani Y, Mathew WT, et al. An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J Therm Biol. 2001;26(4):427–31.CrossRefGoogle Scholar
  23. 23.
    Belding HS, Hatch TF. Index for evaluating heat stress in terms of resulting physiological strain. Heat Pip Air Condit. 1955;27:129–36.Google Scholar
  24. 24.
    Kenny NA, Warland JS, Brown RD, Gillespie TJ. Part B: revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int J Biometeorol. 2009;53:429–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Moran DS, Shitzer A, Pandolf KB. A physiological strain index to evaluate heat stress. Am J Physiol Regul Integr Comp Physiol. 1998;275(1):R129–34.CrossRefGoogle Scholar
  26. 26.
    Brake DJ, Bates GP. Limiting metabolic rate (thermal work limit) as an index of thermal stress. Appl Occup Environ Hyg. 2002;17(3):176–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, et al. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol. 2012;56(3):481–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. 2012;56(3):429–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Brode P, Fiala D, Kampmann B. Considering varying clothing, activities and exposure times with the Universal Thermal Climate Index UTCI. In: Proceedings of the International Congress on Biometeorology, Durham, UK, Sept 2017.Google Scholar
  30. 30.
    Kark JA, Burr PQ, Wenger CB, Gastaldo E, Gardner JW. Exertional heat illness in Marine Corps recruit training. Aviat Space Environ Med. 1996;67(4):354–60.PubMedGoogle Scholar
  31. 31.
    Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Grundstein AJ, Ramseyer C, Zhao F, Pesses JL, Akers P, Qureshi A, et al. A retrospective analysis of American football hyperthermia deaths in the United States. Int J Biometeorol. 2012;56(1):11–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Cooper ER, Ferrara MS, Casa DJ, Powell JW, Broglio SP, Resch JE, et al. Exertional heat illness in American football players: when is the risk greatest? J Athl Train. 2016;51:593–600.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gardner JW, Kark JA. Chapter 7: clinical diagnosis, management, and surveillance of exertional heat illness. In: Medical aspects of harsh environments. p. 231–79.Google Scholar
  35. 35.
    Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Racinais S, Alonso J-M, Coutts AJ, Flouris AD, Girard O, González-Alonso J, et al. Consensus recommendations on training and competing in the heat. Sports Med. 2015;45(7):925–38.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Georgia High School Association. Practice policy for heat and humidity [Internet]. 2016. [cited 2016 Sep 8].
  38. 38.
    Jacklitsch B, Williams W, Musolin K, Coca A, Kim J-H, Turner N. NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments [Internet]. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; 2016.
  39. 39.
    Headquarters, Departments of the Army and Air Force. Heat stress control and heat casualty management. TB MED 507. 2003.Google Scholar
  40. 40.
    Roberts WO. Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Med Sci Sports Exerc. 2010;42(2):226–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the contiguous United States. Appl Geogr. 2015;56:55–60.CrossRefGoogle Scholar
  42. 42.
    National Collegiate Athletic Association. Guideline 2C: prevention of heat illness. 2014.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yuri Hosokawa
    • 1
    Email author
  • Andrew J. Grundstein
    • 2
  • Jennifer K. Vanos
    • 3
  • Earl R. Cooper
    • 4
  1. 1.Department of KinesiologyKorey Stringer Institute, University of ConnecticutStorrsUSA
  2. 2.Department of GeographyUniversity of GeorgiaAthensUSA
  3. 3.Atmospheric Science, Physical OceanographyScripps Institution of Oceanography, University of California San DiegoLa JollaUSA
  4. 4.Department of KinesiologyUniversity of GeorgiaAthensUSA

Personalised recommendations