Skip to main content

Widespread Fatigue Damage and Limit of Validity

  • Chapter
  • First Online:
  • 874 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

Multiple site damage (MSD) and multi element damage (MED) decrease the number of cycles up to failure, and concomitantly decrease the interval for inspection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Federal Aviation Administration—FAA, Advisory circular AC No. 120-104: Establishing and implementing limit of validity to prevent widespread fatigue damage (2011)

    Google Scholar 

  2. Airworthiness Assurance Working Group—AAWG, Structural fatigue evaluation for aging airplanes (October 1993)

    Google Scholar 

  3. Group for Aeronautical Research and Technology in Europe—GARTEUR, Assessment of multiple site damage in highly loaded joints (1997)

    Google Scholar 

  4. R.G. Eastin, ‘WFD’-what is it and what’s LOV got to do with it? Int. J. Fatigue 31, 1012–1016 (2009)

    Article  Google Scholar 

  5. Federal Register, 14 CFR Parts 25, 26, 121, and 129 [Docket No. FAA200624281; Amendment Nos. 25132, 265, 121351, 12948], Aging airplane program: widespread fatigue damage, Final Rule, vol. 75, no. 219, 15 November 2010, pp. 69746–69789

    Google Scholar 

  6. Y. Jin, P. Cai, Q.B. Tian, C.Y. Liang, D.J. Ke, G. Wang, T. Zhai, An experimental methodology for quantitative characterization of multi-site fatigue crack nucleation in high-strength al alloys. Fatigue Fract. Eng. Mater. Struct. 39, 696–711 (2016)

    Article  Google Scholar 

  7. L.F.M. Silva, J.P.M. Gonçalves, F.M.F. Oliveira, P.M.S.T. de Castro, Multiple-site damage in riveted lap-joints: experimental simulation and finite element prediction. Int. J. Fatigue 22, 319–338 (2000)

    Article  Google Scholar 

  8. R. Galatolo, K.F. Nilsson, An experimental and numerical analysis of residual strength of butt-joints panels with multiple site damage. Eng. Fract. Mech. 68(13), 1437–1461 (2001)

    Article  Google Scholar 

  9. R. Galatolo, R. Lazzeri, Experiments and model predictions for fatigue crack propagation in riveted lap-joints with multiple site damage. Fatigue Fract. Eng. Mater. Struct. 39, 307–319 (2016)

    Article  Google Scholar 

  10. M. Skorupa, T. Machniewicz, A. Skorupa, A. Korbel, Effect of load transfer by friction on the fatigue behaviour of riveted lap joints. Int. J. Fatigue 90, 1–11 (2016)

    Article  Google Scholar 

  11. Federal Register, 14 CFR Parts 25, 121, and 129 Docket No. FAA200624281; Notice No. 0604, Aging aircraft program: widespread fatigue damage, notice of proposed rulemaking (NPRM), vol. 71, no. 74, 18 April 2006, pp. 19928–19951

    Google Scholar 

  12. A.W. Hoggard, S.R. Johnson, Understanding the new widespread fatigue damage rule. Boeing Aero Mag. 48(quarter 04), 5–11 (2012)

    Google Scholar 

  13. N. Turrel, D. Auriche, Widespread fatigue damage-A300B: compliance with ageing aircraft regulation. Airbus Fast Mag. 51, 17–23 (2013)

    Google Scholar 

  14. R.G. Eastin, W. Sippel, The ‘WFD rule’: have we come full circle? in USAF Aircraft Structural Integrity Conference (ASIP 2011) (San Antonio, Texas, USA, 29 Nov–1 Dec 2011)

    Google Scholar 

  15. J.E. Dougherty, FAA fatigue strength criteria and practices, in Fatigue Design Procedures: Proceedings of the 4th Symposium of the International Committee on Aeronautical Fatigue, ed. by W.S.E. Gassner (Pergamon Press, 1965)

    Google Scholar 

  16. UK Ministry of Transport and Civil Aviation, Civil aircraft accident: Report of the court of inquiry into the accidents to Comet G-ALYP on 10th January 1954 and Comet G-ALYY on 8th April 1954 (1955)

    Google Scholar 

  17. UK Department of Trade Accidents Investigation Branch, Boeing 707 321C G-BEBP: report on the accident near Lusaka international airport, Zambia, on 14 May 1977 (1979)

    Google Scholar 

  18. National Transportation Safety Board—NTSB, Aircraft accident report—Aloha Airlines, flight 243, Boeing 737-200, N73711, near Maui, Hawaii, 28 April 1988 (1989)

    Google Scholar 

  19. P. Safarian, Historical perspective of fatigue requirements, in NTSB Airplane Fuselage Structural Integrity Forum, (Washington, DC, USA, 21–22 Sept 2011)

    Google Scholar 

  20. Federal Register, Docket No. FAA-2005-21693; Notice No. 05-11, Damage tolerance data for repairs and alterations, notice of proposed rulemaking (NPRM), vol. 71, no. 77, 21 April 2006

    Google Scholar 

  21. Federal Register, 14 CFR Parts 26, 121, and 129 Docket No. FAA200521693; Amendment Nos. 261, 121337, 12944, Damage tolerance data for repairs and alterations, Final Rule, vol. 72, no. 238, 12 Dec 2007

    Google Scholar 

  22. S. Hall, M. Vellacot, Safe and economic management of widespread fatigue damage (WFD) using prognostic/diagnostic health and usage monitoring, in The 5th DSTO International Conference on Health and Usage Monitoring (Melbourne, Australia, 20–21 March 2007)

    Google Scholar 

  23. Boeing Commercial Airplanes, Boeing Commercial Airplanes comments to FAA Notice of Proposed Rulemaking Aging Aircraft Program: Widespread Fatigue Damage (Docket Number FAA-2006-24281) and Proposed Advisory Circular (AC) 120-YY-Widespread Fatigue Damage on Metallic Structure (2006)

    Google Scholar 

  24. Boeing Commercial Airplanes, Statistical summary of commercial jet airplane accidents. Worldwide operations 1959–2015 (2016)

    Google Scholar 

  25. Regulation (EU) No. 996/2010 of the European Parliament and of the Council of 20 October 2010, Official Journal of the European Union, 12 Nov 2010, L295/35-L295/50

    Google Scholar 

  26. Regulation (EU) No. 376/2014 of the European Parliament and of the Council of 3 April 2014, Official Journal of the European Union, 24 April 2014, L122/18-L122/43

    Google Scholar 

  27. H. Petroski, To Engineer Is Human: The Role of Failure in Successful Design (Penguin Random House, 1992)

    Google Scholar 

  28. C.F. Tiffany, J.P. Gallagher, C.A. Babish IV, Threats to aircraft structural safety, including a compendium of selected structural accidents incidents, Report ASC-TR-2010-5002, United States Air Force (USAF) (2010)

    Google Scholar 

  29. R.J.H. Wanhill, L. Molent, S.A. Barter, E. Amsterdam, Milestone case histories in aircraft structural integrity—update 2015, Report NLR-TP-2015-193 (2015)

    Google Scholar 

  30. D. Duarte, B. Marado, J. Nogueira, B. Serrano, V. Infante, F. Moleiro, An overview on how failure analysis contributes to flight safety in the Portuguese Air Force. Eng. Fail. Anal. 65, 86–101 (2016)

    Article  Google Scholar 

  31. B. Serrano, V. Infante, B. Marado, Fatigue life time prediction of PoAF Epsilon TB-30 aircraft-implementation of automatic crack growth based on 3D finite element method. Eng. Fail. Anal. 33, 17–28 (2013)

    Article  Google Scholar 

  32. P.M.S.T. de Castro, P.F.P. de Matos, P.M.G.P. Moreira, L.F.M. da Silva, An overview on fatigue analysis of aeronautical structural details: open hole, single rivet lap-joint, and lap-joint panel. Mater. Sci. Eng. A 468–47, 144–157 (2007)

    Article  Google Scholar 

  33. D.F.O. Braga, S.M.O. Tavares, L.F.M. da Silva, P.M.G.P. Moreira, P.M.S.T. de Castro, Advanced design for lightweight structures: review and prospects. Prog. Aerosp. Sci. 69, 29–39 (2014)

    Article  Google Scholar 

  34. P.M.S.T. de Castro, Virtual issue-VI Fatigue and fracture of aerostructures (Fatigue Fract. Eng. Mater, Struct, 2016)

    Google Scholar 

  35. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 1st edn. (CRC Press, 1991)

    Google Scholar 

  36. H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis of Cracks Handbook, 3rd edn. (ASME, 2000)

    Google Scholar 

  37. E.S. Folias, On the theory of fracture of curved sheets. Eng. Fract. Mech. 2(2), 151–164 (1970)

    Article  Google Scholar 

  38. A. Zahoor, Ductile fracture handbook, Report NP-6301-D, EPRI (1990)

    Google Scholar 

  39. S.M.O. Tavares, P.M.S.T. de Castro, Stress intensity factor calibration for a longitudinal crack in a fuselage barrel and the bulging effect influence. Eng. Fract. Mech. 78(17), 2907–2918 (2011)

    Article  Google Scholar 

  40. P.M.G.P. Moreira, S.D. Pastrama, P.M.S.T. de Castro, Three-dimensional stress intensity factor calibration for a stiffened cracked plate. Eng. Fract. Mech. 76(14), 2298–2308 (2009)

    Article  Google Scholar 

  41. H. Richard, Bruchvorhersagen bei überlagerter normal-und schubbeanspruchung von rissen. VDI Forschungsheft 631, 1–60 (1985)

    Google Scholar 

  42. M. Hermosilla, Stress intensity factor calculation using conventional and extended finite element method, Master’s thesis (Faculdade de Engenharia da Universidade do Porto, 2016)

    Google Scholar 

  43. S. Häusler, P. Baiz, S.M.O. Tavares, A. Brot, P. Horst, M. Aliabadi, P.M.S.T. de Castro, Y. Peleg-Wolfin, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part I: Model overview. Struct. Durab. Health Monit. 7(3), 163–190 (2011)

    Google Scholar 

  44. S.M.O. Tavares, S. Häusler, P. Baiz, A. Brot, P. Augustin, P.M.S.T. de Castro, P. Horst, M. Aliabadi, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part II: Modelling and experiments comparison. Struct. Durab. Health Monit. 7(3), 191–210 (2011)

    Google Scholar 

  45. A. Lanciotti, L. Lazzeri, C. Polese, C. Rodopoulos, P. Moreira, A. Brot, G. Wang, L. Velterop, G. Biallas, J. Klement, Fatigue crack growth in stiffened panels, integrally machined or welded (LBW or FSW): the DATON project common testing program. Struct. Durab. Health Monit. 7(3), 211–230 (2011)

    Google Scholar 

  46. J.W. Hutchinson, Life as a mechanician: 1956-; Timoshenko medal acceptance speech, 2002 IMECE, New Orleans, LA, USA (ASME Applied Mechanics Division newsletter, 2003), pp. 1 and 3–4

    Google Scholar 

  47. H. Akes, L. Susmel, Understanding cracked materials: is linear elastic fracture mechanics obsolete? Fatigue Fract. Eng. Mater. Struct. 38, 154–160 (2015)

    Article  Google Scholar 

  48. P. Camanho, G. Erçin, G. Catalanotti, S. Mahdi, P. Linde, A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos. Part A: Appl. Sci. Manuf. 43(8), 1219–1225 (2012)

    Article  Google Scholar 

  49. P. Weißgraeber, D. Leguillon, W. Becker, A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Arch. Appl. Mech. 86, 375–401 (2016)

    Article  Google Scholar 

  50. P.M.G.P. Moreira, L.F.M. da Silva, P.M.S.T. de Castro, Structural Connections for Lightweight Metallic Structures (Springer-Verlag, 2012)

    Google Scholar 

  51. J. Lu, N. Huber, N. Kashaev, Influence of the geometry on the fatigue performance of crenellated fuselage panels. Ciência Tecnolog. Mater. 27(2), 100–107 (2015)

    Article  Google Scholar 

  52. J. Lu, N. Kashaev, N. Huber, Crenellation patterns for fatigue crack retardation in fuselage panels optimized via genetic algorithm. Proced. Eng. 114, 248–254 (2015)

    Article  Google Scholar 

  53. J. Lu, N. Kashaev, N. Huber, Optimization of crenellation patterns for fatigue crack retardation via genetic algorithm and the reduction in computational cost. Eng. Fail. Anal. 63, 21–30 (2016)

    Article  Google Scholar 

  54. M.V. Uz, M. Koçak, F. Lemaitre, J.C. Ehrström, S. Kempa, F. Bron, Improvement of damage tolerance of laser beam welded stiffened panels for airframes via local engineering. Int. J. Fatigue 31(5), 916–926 (2009)

    Article  Google Scholar 

  55. P. Edwards, M. Ramulu, Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38, 1228–1236 (2015)

    Article  Google Scholar 

  56. A. Concilio, I. Dimino, L. Lecce, R. Pecora, et al., Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters (Butterworth-Heinemann, 2017)

    Google Scholar 

  57. P.C. Wölcken, M. Papadopoulos, Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference (Springer, 2015)

    Google Scholar 

  58. S.M.O. Tavares, S.J. Moreira, P.M.S.T. de Castro, P.V. Gamboa, Morphing aeronautical structures: a review focused on UAVs and durability assessment, in 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) (Kyiv (IEEE, Ukraine, 2017), pp. 49–52

    Google Scholar 

  59. S. Barbarino, R. Pecora, L. Lecce, A. Concilio, S. Ameduri, L. De Rosa, Airfoil structural morphing based on S.M.A. actuator series: numerical and experimental studies. J. Intell. Mater. Syst. Struct. 22, 987–1004 (2011)

    Google Scholar 

  60. G. McKnight, R. Doty, A. Keefe, G. Herrera, C. Henry, Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 21, 1783–1793 (2010)

    Article  Google Scholar 

  61. E.A. Bubert, B.K.S. Woods, K. Lee, C.S. Kothera, N.M. Wereley, Design and fabrication of a passive 1D morphing aircraft skin. J. Intell. Mater. Syst. Struct. 21, 1699–1717 (2010)

    Article  Google Scholar 

  62. R.D. Vocke, C.S. Kothera, B.K.S. Woods, N.M. Wereley, Development and testing of a span-extending morphing wing. J. Intell. Mater. Syst. Struct. 22, 879–890 (2011)

    Article  Google Scholar 

  63. S.J. Moreira, S.M.O. Tavares, P.M.S.T. Castro, Morphing structures and fatigue: the case of an unmanned aerial vehicle wing leading edge. Fatigue Fract. Eng. Mater. Struct. 40(10), 1601–1611 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio M. O. Tavares .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavares, S.M.O., de Castro, P.M.S.T. (2019). Widespread Fatigue Damage and Limit of Validity. In: Damage Tolerance of Metallic Aircraft Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-70190-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70190-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70189-9

  • Online ISBN: 978-3-319-70190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics