Cellular Mechanisms Driving Sex Differences in Adipose Tissue Biology and Body Shape in Humans and Mouse Models

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)

Abstract

Sex differences in adipose tissue distribution and the metabolic, endocrine, and immune functions of different anatomical fat depots have been described, but they are incompletely documented in the literature. It is becoming increasingly clear that adipose depots serve distinct functions in males and females and have specific physiological roles. However, the mechanisms that regulate the size and function of specific adipose tissues in men and women remain poorly understood. New insights from mouse models have advanced our understanding of depot differences in adipose growth and remodeling via the proliferation and differentiation of adipose progenitors that can expand adipocyte number in the tissue or simply replace dysfunctional older and larger adipocytes. A limited ability of a depot to expand or remodel can lead to excessive adipocyte hypertrophy, which is often correlated with metabolic dysfunction. However, the relationship of adipocyte size and function varies by depot and sex. For example, femoral adipose tissues of premenopausal women appear to have a greater capacity for adipose expansion via hyperplasia and hypertrophy; although larger, these gluteal-femoral adipocytes remain insulin sensitive. The microenvironment of specific depots, including the composition of the extracellular matrix and cellular composition, as well as cell-autonomous genetic differences, influences sex- and depot-dependent metabolic and growth properties. Although there are some species differences, studies of the molecular and physiological determinants of sex differences in adipocyte growth and function in humans and rodents are both needed for understanding sex differences in health and disease.

Notes

Acknowledgement

The authors received grant support from NIH RO1 DK080448, R24DK087669, R56104369. we thank Dr. Steven R.Smith for ongoing scientifc discussons related to the topc of this review.

References

  1. Andersson, D. P., Arner, E., Hogling, D. E., Ryden, M., & Arner, P. (2017). Abdominal subcutaneous adipose tissue cellularity in men and women. International Journal of Obesity (London), 41(10), 1564–1569.Google Scholar
  2. Arner, E., Westermark, P. O., Spalding, K. L., Britton, T., Ryden, M., Frisen, J., Bernard, S., & Arner, P. (2010). Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes, 59, 105–109.CrossRefPubMedGoogle Scholar
  3. Arner, P., Andersson, D. P., Thorne, A., Wiren, M., Hoffstedt, J., Naslund, E., Thorell, A., & Ryden, M. (2013). Variations in the size of the major omentum are primarily determined by fat cell number. The Journal of Clinical Endocrinology and Metabolism, 98, E897–E901.CrossRefPubMedGoogle Scholar
  4. Baker, N. A., Muir, L. A., Washabaugh, A. R., Neeley, C. K., Chen, S. Y., Flesher, C. G., Vorwald, J., Finks, J. F., Ghaferi, A. A., Mulholland, M. W., Varban, O. A., Lumeng, C. N., & O’Rourke, R. W. (2017). Diabetes-specific regulation of adipocyte metabolism by the adipose tissue extracellular matrix. The Journal of Clinical Endocrinology and Metabolism, 102, 1032–1043.PubMedPubMedCentralGoogle Scholar
  5. Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews. Molecular Cell Biology, 15, 786–801.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bragdon, B., Burns, R., Baker, A. H., Belkina, A. C., Morgan, E. F., Denis, G. V., Gerstenfeld, L. C., & Schlezinger, J. J. (2015). Intrinsic sex-linked variations in osteogenic and adipogenic differentiation potential of bone marrow multipotent stromal cells. Journal of Cellular Physiology, 230, 296–307.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Canoy, D., Boekholdt, S. M., Wareham, N., Luben, R., Welch, A., Bingham, S., Buchan, I., Day, N., & Khaw, K. T. (2007). Body fat distribution and risk of coronary heart disease in men and women in the European prospective investigation into cancer and nutrition in Norfolk cohort: A population-based prospective study. Circulation, 116, 2933–2943.CrossRefPubMedGoogle Scholar
  8. Carey, V. J., Walters, E. E., Colditz, G. A., Solomon, C. G., Willett, W. C., Rosner, B. A., Speizer, F. E., & Manson, J. E. (1997). Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. American Journal of Epidemiology, 145, 614–619.CrossRefPubMedGoogle Scholar
  9. Chan, J. M., Rimm, E. B., Colditz, G. A., Stampfer, M. J., & Willett, W. C. (1994). Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care, 17, 961–969.CrossRefPubMedGoogle Scholar
  10. Contreras, G. A., Thelen, K., Ayala-Lopez, N., & Watts, S. W. (2016). The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location. Physiology Report, 4, e12993.CrossRefGoogle Scholar
  11. Cox-York, K. A., Erickson, C. B., Pereira, R. I., Bessesen, D. H., & Van Pelt, R. E. (2017). Region-specific effects of oestradiol on adipose-derived stem cell differentiation in post-menopausal women. Journal of Cellular and Molecular Medicine, 21, 677–684.CrossRefPubMedGoogle Scholar
  12. Crewe, C., An, Y. A., & Scherer, P. E. (2017). The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. The Journal of Clinical Investigation, 127, 74–82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Danforth, E., Jr. (2000). Failure of adipocyte differentiation causes type II diabetes mellitus? Nature Genetics, 26, 13.CrossRefPubMedGoogle Scholar
  14. Divoux, A., Xie, H., Li, J. L., Karastergiou, K. M., Perera, R. J., Chang, R. J., Fried, S. K., & Smith, S. R. (2017). MicroRNA-196 regulates HOX gene expression in human gluteal adipose tissue. Obesity (Silver Spring), 25, 1375.CrossRefGoogle Scholar
  15. Fall, T., Mendelson, M., & Speliotes, E. K. (2017). Recent advances in human genetics and epigenetics of adiposity: Pathway to precision medicine? Gastroenterology, 152, 1695–1706.CrossRefPubMedGoogle Scholar
  16. Faust, I. M., Johnson, P. R., Stern, J. S., & Hirsch, J. (1978). Diet-induced adipocyte number increase in adult rats: A new model of obesity. The American Journal of Physiology, 235, E279–E286.PubMedGoogle Scholar
  17. Foley, J. E., Kashiwagi, A., Chang, H., Huecksteadt, T. P., Lillioja, S., Verso, M. A., & Reaven, G. (1984). Sex difference in insulin-stimulated glucose transport in rat and human adipocytes. The American Journal of Physiology, 246, E211–E215.PubMedGoogle Scholar
  18. Fried, S. K., Lee, M. J., & Karastergiou, K. (2015). Shaping fat distribution: New insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring), 23, 1345–1352.CrossRefGoogle Scholar
  19. Gao, H., Volat, F., Sandhow, L., Galitzky, J., Nguyen, T., Esteve, D., Astrom, G., Mejhert, N., Ledoux, S., Thalamas, C., Arner, P., Guillemot, J. C., Qian, H., Ryden, M., & Bouloumie, A. (2017). CD36 is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cells, 35, 1799–1814.CrossRefPubMedGoogle Scholar
  20. Gesta, S., Bluher, M., Yamamoto, Y., Norris, A. W., Berndt, J., Kralisch, S., Boucher, J., Lewis, C., & Kahn, C. R. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 103, 6676–6681.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Giordano, A., Frontini, A., Murano, I., Tonello, C., Marino, M. A., Carruba, M. O., Nisoli, E., & Cinti, S. (2005). Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. The Journal of Histochemistry and Cytochemistry, 53, 679–687.CrossRefPubMedGoogle Scholar
  22. Giordano, A., Murano, I., Mondini, E., Perugini, J., Smorlesi, A., Severi, I., Barazzoni, R., Scherer, P. E., & Cinti, S. (2013). Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research, 54, 2423–2436.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giordano, A., Smorlesi, A., Frontini, A., Barbatelli, G., & Cinti, S. (2014). White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ. European Journal of Endocrinology, 170, R159–R171.CrossRefPubMedGoogle Scholar
  24. Grandl, G., Muller, S., Moest, H., Moser, C., Wollscheid, B., & Wolfrum, C. (2016). Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling. Molecular Metabolism, 5, 937–947.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Grove, K. L., Fried, S. K., Greenberg, A. S., Xiao, X. Q., & Clegg, D. J. (2010). A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. International Journal of Obesity, 34, 989–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guerre-Millo, M., Leturque, A., Girard, J., & Lavau, M. (1985). Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats. The Journal of Clinical Investigation, 76, 109–116.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo, K., Mogen, J., Struzzi, S., & Zhang, Y. (2009). Preadipocyte transplantation: An in vivo study of direct leptin signaling on adipocyte morphogenesis and cell size. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296, R1339–R1347.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hames, K. C., Koutsari, C., Santosa, S., BUSH, N. C., & Jensen, M. D. (2015). Adipose tissue fatty acid storage factors: Effects of depot, sex and fat cell size. International Journal of Obesity, 39, 884–887.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hernandez, T. L., Bessesen, D. H., Cox-York, K. A., Erickson, C. B., Law, C. K., Anderson, M. K., Wang, H., Jackman, M. R., & Van Pelt, R. E. (2015). Femoral lipectomy increases postprandial lipemia in women. American Journal of Physiology. Endocrinology and Metabolism, 309, E63–E71.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jeffery, E., Church, C. D., Holtrup, B., Colman, L., & Rodeheffer, M. S. (2015). Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology, 17, 376–385.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jeffery, E., Wing, A., Holtrup, B., Sebo, Z., Kaplan, J. L., Saavedra-Pena, R., Church, C. D., Colman, L., Berry, R., & Rodeheffer, M. S. (2016). The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metabolism, 24, 142–150.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Joe, A. W., Yi, L., Even, Y., Vogl, A. W., & Rossi, F. M. (2009). Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells, 27, 2563–2570.CrossRefPubMedGoogle Scholar
  33. Johnson, P. R., & Hirsch, J. (1972). Cellularity of adipose depots in six strains of genetically obese mice. Journal of Lipid Research, 13, 2–11.PubMedGoogle Scholar
  34. Johnson, J. A., Fried, S. K., Pi-Sunyer, F. X., & Albu, J. B. (2001). Impaired insulin action in subcutaneous adipocytes from women with visceral obesity. American Journal of Physiology. Endocrinology and Metabolism, 280, E40–E49.CrossRefPubMedGoogle Scholar
  35. Karastergiou, K., Smith, S. R., Greenberg, A. S., & Fried, S. K. (2012). Sex differences in human adipose tissues – the biology of pear shape. Biology of Sex Differences, 3, 13.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Karastergiou, K., Fried, S. K., Xie, H., Lee, M. J., Divoux, A., Rosencrantz, M. A., Chang, R. J., & Smith, S. R. (2013). Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. The Journal of Clinical Endocrinology and Metabolism, 98, 362–371.CrossRefPubMedGoogle Scholar
  37. Karpe, F., & Pinnick, K. E. (2015). Biology of upper-body and lower-body adipose tissue – link to whole-body phenotypes. Nature Reviews. Endocrinology, 11, 90–100.CrossRefPubMedGoogle Scholar
  38. Keller, M., Hopp, L., Liu, X., Wohland, T., Rohde, K., Cancello, R., Klos, M., Bacos, K., Kern, M., Eichelmann, F., Dietrich, A., Schon, M. R., Gartner, D., Lohmann, T., Dressler, M., Stumvoll, M., Kovacs, P., Diblasio, A. M., Ling, C., Binder, H., Bluher, M., & Bottcher, Y. (2017). Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Molecular Metabolism, 6, 86–100.CrossRefPubMedGoogle Scholar
  39. Kim, S. N., Jung, Y. S., Kwon, H. J., Seong, J. K., Granneman, J. G., & Lee, Y. H. (2016). Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biology of Sex Differences, 7, 67.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lacasa, D., Garcia Dos Santos, E., Li, J. L., & Giudicelli, Y. (2001). Site-specific control of rat preadipocyte adipose conversion by ovarian status: Possible involvement of CCAAT/enhancer-binding protein transcription factors. Endocrine, 15, 103–110.CrossRefPubMedGoogle Scholar
  41. Laforest, S., Michaud, A., Paris, G., Pelletier, M., Vidal, H., Geloen, A., & Tchernof, A. (2017). Comparative analysis of three human adipocyte size measurement methods and their relevance for cardiometabolic risk. Obesity (Silver Spring), 25, 122–131.CrossRefGoogle Scholar
  42. Lessard, J., Laforest, S., Pelletier, M., Leboeuf, M., Blackburn, L., & Tchernof, A. (2014). Low abdominal subcutaneous preadipocyte adipogenesis is associated with visceral obesity, visceral adipocyte hypertrophy, and a dysmetabolic state. Adipocytes, 3, 197–205.CrossRefGoogle Scholar
  43. Lin, J. Z., & Farmer, S. R. (2016). Morphogenetics in brown, beige and white fat development. Adipocytes, 5, 130–135.CrossRefGoogle Scholar
  44. Link, J. C., & Reue, K. (2017). The genetic basis for sex differences in obesity and lipid metabolism. Annual Review of Nutrition, 37, 225.CrossRefPubMedGoogle Scholar
  45. Link, J. C., Hasin-Brumshtein, Y., Cantor, R. M., Chen, X., Arnold, A. P., Lusis, A. J., & REUE, K. (2017). Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics, 18, 89.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu, Y., Aron-Wisnewsky, J., Marcelin, G., Genser, L., Le Naour, G., Torcivia, A., Bauvois, B., Bouchet, S., Pelloux, V., Sasso, M., Miette, V., Tordjman, J., & Clement, K. (2016). Accumulation and changes in composition of collagens in subcutaneous adipose tissue after bariatric surgery. The Journal of Clinical Endocrinology and Metabolism, 101, 293–304.CrossRefPubMedGoogle Scholar
  47. MacArtney-Coxson, D., Benton, M. C., Blick, R., Stubbs, R. S., Hagan, R. D., & Langston, M. A. (2017). Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clinical Epigenetics, 9, 48.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Macotela, Y., Boucher, J., Tran, T. T., & Kahn, C. R. (2009). Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes, 58, 803–812.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Macotela, Y., Emanuelli, B., Mori, M. A., Gesta, S., Schulz, T. J., Tseng, Y. H., & Kahn, C. R. (2012). Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes, 61, 1691–1699.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mahdaviani, K., Benador, I. Y., Su, S., Gharakhanian, R. A., Stiles, L., Trudeau, K. M., Cardamone, M., Enriquez-Zarralanga, V., Ritou, E., Aprahamian, T., Oliveira, M. F., Corkey, B. E., Perissi, V., Liesa, M., & Shirihai, O. S. (2017). Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Reports, 18, 1123–1138.CrossRefPubMedGoogle Scholar
  51. Martinez-Santibanez, G., Singer, K., Cho, K. W., Delproposto, J. L., Mergian, T., & Lumeng, C. N. (2015). Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocytes, 4, 264–272.CrossRefGoogle Scholar
  52. Mclaughlin, T., Lamendola, C., Coghlan, N., Liu, T. C., Lerner, K., Sherman, A., & Cushman, S. W. (2014). Subcutaneous adipose cell size and distribution: Relationship to insulin resistance and body fat. Obesity (Silver Spring), 22, 673–680.CrossRefGoogle Scholar
  53. Mclaughlin, T., Craig, C., Liu, L. F., Perelman, D., Allister, C., Spielman, D., & CUSHMAN, S. W. (2016). Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes, 65, 1245–1254.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Medrikova, D., Jilkova, Z. M., Bardova, K., Janovska, P., Rossmeisl, M., & Kopecky, J. (2012). Sex differences during the course of diet-induced obesity in mice: Adipose tissue expandability and glycemic control. International Journal of Obesity, 36, 262–272.CrossRefPubMedGoogle Scholar
  55. Mele, M., Ferreira, P. G., Reverter, F., Deluca, D. S., Monlong, J., Sammeth, M., Young, T. R., Goldmann, J. M., Pervouchine, D. D., Sullivan, T. J., Johnson, R., Segre, A. V., Djebali, S., Niarchou, A., Consortium, G. T., Wright, F. A., Lappalainen, T., Calvo, M., Getz, G., Dermitzakis, E. T., Ardlie, K. G., & Guigo, R. (2015). Human genomics. The human transcriptome across tissues and individuals. Science, 348, 660–665.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Morgan-Bathke, M., Chen, L., Oberschneider, E., Harteneck, D., & Jensen, M. D. (2015). Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity. American Journal of Physiology. Endocrinology and Metabolism, 308, E830–E846.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Muir, L. A., Neeley, C. K., Meyer, K. A., Baker, N. A., Brosius, A. M., Washabaugh, A. R., Varban, O. A., Finks, J. F., Zamarron, B. F., Flesher, C. G., Chang, J. S., Del Proposto, J. B., Geletka, L., Martinez-Santibanez, G., Kaciroti, N., Lumeng, C. N., & O’Rourke, R. W. (2016). Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring), 24, 597–605.CrossRefGoogle Scholar
  58. Mundi, M. S., Koutsari, C., & Jensen, M. D. (2014). Effects of increased free fatty acid availability on adipose tissue fatty acid storage in men. The Journal of Clinical Endocrinology and Metabolism, 99, E2635–E2642.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nookaew, I., Svensson, P. A., Jacobson, P., Jernas, M., Taube, M., Larsson, I., Andersson-Assarsson, J. C., Sjostrom, L., Froguel, P., Walley, A., Nielsen, J., & Carlsson, L. M. (2013). Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. The Journal of Clinical Endocrinology and Metabolism, 98, E370–E378.CrossRefPubMedGoogle Scholar
  60. Palmer, B. F., & Clegg, D. J. (2015). The sexual dimorphism of obesity. Molecular and Cellular Endocrinology, 402, 113–119.CrossRefPubMedGoogle Scholar
  61. Pasarica, M., Gowronska-Kozak, B., Burk, D., Remedios, I., Hymel, D., Gimble, J., Ravussin, E., Bray, G. A., & Smith, S. R. (2009). Adipose tissue collagen VI in obesity. The Journal of Clinical Endocrinology and Metabolism, 94, 5155–5162.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pinnick, K. E., Nicholson, G., Manolopoulos, K. N., McQuaid, S. E., Valet, P., Frayn, K. N., Denton, N., Min, J. L., Zondervan, K. T., Fleckner, J., Mol, P. C., McCarthy, M. I., Holmes, C. C., & Karpe, F. (2014). Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes, 63, 3785–3797.CrossRefPubMedGoogle Scholar
  63. Pischon, T., Boeing, H., Hoffmann, K., Bergmann, M., Schulze, M. B., Overvad, K., Van Der Schouw, Y. T., Spencer, E., Moons, K. G., Tjonneland, A., Halkjaer, J., Jensen, M. K., Stegger, J., Clavel-Chapelon, F., Boutron-Ruault, M. C., Chajes, V., Linseisen, J., Kaaks, R., Trichopoulou, A., Trichopoulos, D., Bamia, C., Sieri, S., Palli, D., Tumino, R., Viveis, P., Panico, S., Peeters, P. H., May, A. M., Bueno-De-Mesquita, H. B., Van Duijnhoven, F. J., Hallmans, G., Weinehall, L., Manjer, J., Hedblad, B., Lund, E., Agudo, A., Arriola, L., Barricarte, A., Navarro, C., Martinez, C., Quiros, J. R., KEY, T., Bingham, S., Khaw, K. T., Boffeta, P., Jenab, M., Ferrari, P., & Riboli, E. (2008). General and abdominal adiposity and risk of death in Europe. The New England Journal of Medicine, 359, 2105–2120.CrossRefPubMedGoogle Scholar
  64. Pope, B. D., Warren, C. R., Parker, K. K., & Cowan, C. A. (2016). Microenvironmental control of adipocyte fate and function. Trends in Cell Biology, 26, 745–755.CrossRefPubMedGoogle Scholar
  65. Pulit, S. L., Karaderi, T., & Lindgren, C. M. (2017). Sexual dimorphisms in genetic loci linked to body fat distribution. Bioscience Reports, 37(1), BSR20160184.  https://doi.org/10.1042/BSR20160184.
  66. Ramseyer, V. D., & Granneman, J. G. (2016). Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocytes, 5, 119–129.CrossRefGoogle Scholar
  67. Rantalainen, M., Herrera, B. M., Nicholson, G., Bowden, R., Wills, Q. F., Min, J. L., Neville, M. J., Barrett, A., Allen, M., Rayner, N. W., Fleckner, J., McCarthy, M. I., Zondervan, K. T., Karpe, F., Holmes, C. C., & Lindgren, C. M. (2011). MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS One, 6, e27338.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sanchez-Gurmaches, J., & Guertin, D. A. (2014). Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nature Communications, 5, 4099.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sanchez-Gurmaches, J., Hung, C. M., & Guertin, D. A. (2016). Emerging complexities in adipocyte origins and identity. Trends in Cell Biology, 26, 313–326.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Santosa, S., & Jensen, M. D. (2015). The sexual dimorphism of lipid kinetics in humans. Front Endocrinol (Lausanne), 6, 103.Google Scholar
  71. Santosa, S., Hensrud, D. D., Votruba, S. B., & Jensen, M. D. (2008). The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. The American Journal of Clinical Nutrition, 88, 1134–1141.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Santosa, S., Bonnes, S. L., & Jensen, M. D. (2016). Acute female hypogonadism alters adipose tissue fatty acid storage factors and chylomicronemia. The Journal of Clinical Endocrinology and Metabolism, 101, 2089–2098.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Santosa, S., Bush, N. C., & Jensen, M. D. (2017). Acute testosterone deficiency alters adipose tissue fatty acid storage. The Journal of Clinical Endocrinology and Metabolism, 102, 3056.CrossRefPubMedGoogle Scholar
  74. Schmidt, S. L., Bessesen, D. H., Stotz, S., Peelor, F. F., 3rd, Miller, B. F., & Horton, T. J. (2014). Adrenergic control of lipolysis in women compared with men. J Appl Physiol (1985), 117, 1008–1019.Google Scholar
  75. Shea, K. L., Gavin, K. M., Melanson, E. L., Gibbons, E., Stavros, A., Wolfe, P., Kittelson, J. M., Vondracek, S. F., Schwartz, R. S., Wierman, M. E., & Kohrt, W. M. (2015). Body composition and bone mineral density after ovarian hormone suppression with or without estradiol treatment. Menopause, 22, 1045–1052.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shungin, D., Winkler, T. W., Croteau-Chonka, D. C., Ferreira, T., Locke, A. E., Magi, R., Strawbridge, R. J., Pers, T. H., Fischer, K., Justice, A. E., Workalemahu, T., Wu, J. M., Buchkovich, M. L., Heard-Costa, N. L., Roman, T. S., Drong, A. W., Song, C., Gustafsson, S., Day, F. R., Esko, T., Fall, T., Kutalik, Z., Luan, J., Randall, J. C., Scherag, A., Vedantam, S., Wood, A. R., Chen, J., Fehrmann, R., Karjalainen, J., Kahali, B., Liu, C. T., Schmidt, E. M., Absher, D., Amin, N., Anderson, D., Beekman, M., Bragg-Gresham, J. L., Buyske, S., Demirkan, A., Ehret, G. B., Feitosa, M. F., Goel, A., Jackson, A. U., Johnson, T., Kleber, M. E., Kristiansson, K., Mangino, M., Mateo Leach, I., Medina-Gomez, C., Palmer, C. D., Pasko, D., Pechlivanis, S., Peters, M. J., Prokopenko, I., Stancakova, A., Ju Sung, Y., Tanaka, T., Teumer, A., Van Vliet-Ostaptchouk, J. V., Yengo, L., Zhang, W., Albrecht, E., Arnlov, J., Arscott, G. M., Bandinelli, S., Barrett, A., Bellis, C., Bennett, A. J., Berne, C., Bluher, M., Bohringer, S., Bonnet, F., Bottcher, Y., Bruinenberg, M., Carba, D. B., Caspersen, I. H., Clarke, R., Daw, E. W., Deelen, J., Deelman, E., Delgado, G., Doney, A. S., Eklund, N., Erdos, M. R., Estrada, K., Eury, E., Friedrich, N., Garcia, M. E., Giedraitis, V., Gigante, B., Go, A. S., Golay, A., Grallert, H., Grammer, T. B., Grassler, J., Grewal, J., Groves, C. J., Haller, T., Hallmans, G., et al. (2015). New genetic loci link adipose and insulin biology to body fat distribution. Nature, 518, 187–196.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Singer, K., Maley, N., Mergian, T., Del Proposto, J., Cho, K. W., Zamarron, B. F., Martinez-Santibanez, G., Geletka, L., Muir, L., Wachowiak, P., Demirjian, C., & Lumeng, C. N. (2015). Differences in hematopoietic stem cells contribute to sexually dimorphic inflammatory responses to high fat diet-induced obesity. The Journal of Biological Chemistry, 290, 13250–13262.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Spalding, K. L., Arner, E., Westermark, P. O., Bernard, S., Buchholz, B. A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., & Arner, P. (2008). Dynamics of fat cell turnover in humans. Nature, 453, 783–787.CrossRefPubMedGoogle Scholar
  79. Strissel, K. J., Stancheva, Z., Miyoshi, H., Perfield, J. W., 2nd, Defuria, J., Jick, Z., Greenberg, A. S., & Obin, M. S. (2007). Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes, 56, 2910–2918.CrossRefPubMedGoogle Scholar
  80. Sun, K., Kusminski, C. M., & Scherer, P. E. (2011). Adipose tissue remodeling and obesity. The Journal of Clinical Investigation, 121, 2094–2101.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tchkonia, T., Morbeck, D. E., Von Zglinicki, T., Van Deursen, J., Lustgarten, J., Scrable, H., Khosla, S., Jensen, M. D., & Kirkland, J. L. (2010). Fat tissue, aging, and cellular senescence. Aging Cell, 9, 667–684.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tchoukalova, Y. D., Koutsari, C., Karpyak, M. V., Votruba, S. B., Wendland, E., & Jensen, M. D. (2008). Subcutaneous adipocyte size and body fat distribution. The American Journal of Clinical Nutrition, 87, 56–63.CrossRefPubMedGoogle Scholar
  83. Tchoukalova, Y. D., Koutsari, C., Votruba, S. B., Tchkonia, T., Giorgadze, N., THOMOU, T., Kirkland, J. L., & Jensen, M. D. (2010a). Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring), 18, 1875–1880.CrossRefGoogle Scholar
  84. Tchoukalova, Y. D., Votruba, S. B., Tchkonia, T., Giorgadze, N., Kirkland, J. L., & Jensen, M. D. (2010b). Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proceedings of the National Academy of Sciences of the United States of America, 107, 18226–18231.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tran, T. T., & Kahn, C. R. (2010). Transplantation of adipose tissue and stem cells: Role in metabolism and disease. Nature Reviews. Endocrinology, 6, 195–213.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Van Beek, L., Van Klinken, J. B., Pronk, A. C., Van Dam, A. D., Dirven, E., Rensen, P. C., Koning, F., Willems Van Dijk, K., & Van Harmelen, V. (2015). The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia, 58, 1601–1609.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Virtue, S., & Vidal-Puig, A. (2010). Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochimica et Biophysica Acta, 1801, 338–349.CrossRefPubMedGoogle Scholar
  88. Wang, Q. A., Tao, C., Gupta, R. K., & Scherer, P. E. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine, 19, 1338–1344.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wernstedt Asterholm, I., Tao, C., Morley, T. S., Wang, Q. A., Delgado-Lopez, F., Wang, Z. V., & Scherer, P. E. (2014). Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metabolism, 20, 103–118.CrossRefPubMedGoogle Scholar
  90. White, U. A., Fitch, M. D., Beyl, R. A., Hellerstein, M. K., & Ravussin, E. (2016). Differences in in vivo cellular kinetics in abdominal and femoral subcutaneous adipose tissue in women. Diabetes, 65, 1642–1647.CrossRefPubMedPubMedCentralGoogle Scholar
  91. White, U. A., Fitch, M. D., Beyl, R. A., Hellerstein, M. K., & Ravussin, E. (2017). Association of in vivo adipose tissue cellular kinetics with markers of metabolic health in humans. The Journal of Clinical Endocrinology and Metabolism, 102, 2171.CrossRefPubMedGoogle Scholar
  92. Winkler, T. W., Justice, A. E., Graff, M., Barata, L., Feitosa, M. F., Chu, S., Czajkowski, J., Esko, T., Fall, T., Kilpelainen, T. O., Lu, Y., Magi, R., Mihailov, E., Pers, T. H., Rueger, S., Teumer, A., Ehret, G. B., Ferreira, T., Heard-Costa, N. L., Karjalainen, J., Lagou, V., Mahajan, A., Neinast, M. D., Prokopenko, I., Simino, J., Teslovich, T. M., Jansen, R., Westra, H. J., White, C. C., Absher, D., Ahluwalia, T. S., Ahmad, S., Albrecht, E., Alves, A. C., Bragg-Gresham, J. L., De Craen, A. J., Bis, J. C., Bonnefond, A., Boucher, G., Cadby, G., Cheng, Y. C., Chiang, C. W., Delgado, G., Demirkan, A., Dueker, N., Eklund, N., Eiriksdottir, G., Eriksson, J., Feenstra, B., Fischer, K., Frau, F., Galesloot, T. E., Geller, F., Goel, A., Gorski, M., Grammer, T. B., Gustafsson, S., Haitjema, S., Hottenga, J. J., Huffman, J. E., Jackson, A. U., Jacobs, K. B., Johansson, A., Kaakinen, M., Kleber, M. E., Lahti, J., Mateo Leach, I., Lehne, B., Liu, Y., Lo, K. S., Lorentzon, M., Luan, J., Madden, P. A., Mangino, M., Mcknight, B., Medina-Gomez, C., Monda, K. L., Montasser, M. E., Muller, G., Muller-Nurasyid, M., Nolte, I. M., Panoutsopoulou, K., Pascoe, L., Paternoster, L., Rayner, N. W., Renstrom, F., Rizzi, F., Rose, L. M., Ryan, K. A., Salo, P., Sanna, S., Scharnagl, H., Shi, J., Smith, A. V., Southam, L., Stancakova, A., Steinthorsdottir, V., Strawbridge, R. J., Sung, Y. J., Tachmazidou, I., et al. (2015). The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study. PLoS Genetics, 11, e1005378.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wu, Y., Lee, M. J., Ido, Y., & Fried, S. K. (2017). High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. American Journal of Physiology. Endocrinology and Metabolism, 312, E58–E71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Diabetes, Obesity and Metabolism Institute and Department of Medicine, Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations