Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)

Abstract

Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.

References

  1. Adlercreutz, H. (1970). Oestrogen metabolism in liver disease. The Journal of Endocrinology, 46(1), 129–163.CrossRefPubMedGoogle Scholar
  2. Ahima, R. S., Stanley, T. L., et al. (2011). Estrogen sulfotransferase is expressed in subcutaneous adipose tissue of obese humans in association with TNF-alpha and SOCS3. The Journal of Clinical Endocrinology and Metabolism, 96(7), E1153–E1158.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Ahn, S. B., Jang, K., et al. (2014). Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Digestive Diseases and Sciences, 59(12), 2975–2982.CrossRefPubMedGoogle Scholar
  4. Aksoy, I. A., Wood, T. C., et al. (1994). Human liver estrogen sulfotransferase: Identification by cDNA cloning and expression. Biochemical and Biophysical Research Communications, 200(3), 1621–1629.CrossRefPubMedGoogle Scholar
  5. Aoki, K., Kikuchi, T., et al. (2000). Dehydroepiandrosterone suppresses elevated hepatic glucose-6-phosphatase mRNA level in C57BL/KsJ-db/db mice: Comparison with troglitazone. Endocrine Journal, 47(6), 799–804.CrossRefPubMedGoogle Scholar
  6. Barth, A., Romer, W., et al. (2000). Influence of subchronic administration of oestrone-3-O-sulphamate on oestrone sulphatase activity in liver, spleen and white blood cells of ovariectomized rats. Archives of Toxicology, 74(7), 366–371.CrossRefPubMedGoogle Scholar
  7. Bjerregaard-Olesen, C., Ghisari, M., et al. (2015). Estrone sulfate and dehydroepiandrosterone sulfate: Transactivation of the estrogen and androgen receptor. Steroids, 105, 50–58.CrossRefPubMedGoogle Scholar
  8. Brookes, K. J., Hawi, Z., et al. (2008). Association of the steroid sulfatase (STS) gene with attention deficit hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B(8), 1531–1535.CrossRefGoogle Scholar
  9. Chai, X., Guo, Y., et al. (2015). Oestrogen sulfotransferase ablation sensitizes mice to sepsis. Nature Communications, 6, 7979.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chapman, E., Best, M. D., et al. (2004). Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angewandte Chemie (International Ed. in English), 43(27), 3526–3548.CrossRefGoogle Scholar
  11. Conary, J., Nauerth, A., et al. (1986). Steroid sulfatase. Biosynthesis and processing in normal and mutant fibroblasts. European Journal of Biochemistry, 158(1), 71–76.CrossRefPubMedGoogle Scholar
  12. Cooke, P. S., & Naaz, A. (2004). Role of estrogens in adipocyte development and function. Experimental Biology and Medicine (Maywood, N.J.), 229(11), 1127–1135.CrossRefGoogle Scholar
  13. Courtney, K. D., Corcoran, R. B., et al. (2010). The PI3K pathway as drug target in human cancer. Journal of Clinical Oncology, 28(6), 1075–1083.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dalla Valle, L., Toffolo, V., et al. (2007). The expression of the human steroid sulfatase-encoding gene is driven by alternative first exons. The Journal of Steroid Biochemistry and Molecular Biology, 107(1–2), 22–29.CrossRefPubMedGoogle Scholar
  15. Davies, W., Humby, T., et al. (2009). Converging pharmacological and genetic evidence indicates a role for steroid sulfatase in attention. Biological Psychiatry, 66(4), 360–367.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dodgson, K. S., Spencer, B., et al. (1954). Studies on sulphatases. 6. The localization of arylsulphatase in the rat-liver cell. The Biochemical Journal, 56(2), 177–181.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Dominguez, O. V., Valencia, S. A., et al. (1975). On the role of steroid sulfates in hormone biosynthesis. Journal of Steroid Biochemistry, 6(3–4), 301–309.CrossRefPubMedGoogle Scholar
  18. Falany, C. N. (1997). Enzymology of human cytosolic sulfotransferases. The FASEB Journal, 11(4), 206–216.CrossRefPubMedGoogle Scholar
  19. Ferrante, P., Messali, S., et al. (2002). Molecular and biochemical characterisation of a novel sulphatase gene: Arylsulfatase G (ARSG). European Journal of Human Genetics, 10(12), 813–818.CrossRefPubMedGoogle Scholar
  20. Fu, J., Fang, H., et al. (2011). Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: Role of the aryl hydrocarbon receptor. The Journal of Pharmacology and Experimental Therapeutics, 339(2), 597–606.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gamage, N., Barnett, A., et al. (2006). Human sulfotransferases and their role in chemical metabolism. Toxicological Sciences, 90(1), 5–22.CrossRefPubMedGoogle Scholar
  22. Gande, S. L., Mariappan, M., et al. (2008). Paralog of the formylglycine-generating enzyme – Retention in the endoplasmic reticulum by canonical and noncanonical signals. The FEBS Journal, 275(6), 1118–1130.CrossRefPubMedGoogle Scholar
  23. Gao, J., He, J., et al. (2012). Sex-specific effect of estrogen sulfotransferase on mouse models of type 2 diabetes. Diabetes, 61(6), 1543–1551.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gavaler, J. S. (1995). Alcohol effects on hormone levels in normal postmenopausal women and in postmenopausal women with alcohol-induced cirrhosis. Recent Developments in Alcoholism, 12, 199–208.PubMedGoogle Scholar
  25. Geyer, J., Bakhaus, K., et al. (2016). The role of sulfated steroid hormones in reproductive processes. The Journal of Steroid Biochemical and Molecular Biology, 172, 207–221.CrossRefGoogle Scholar
  26. Gill, A. M., Leiter, E. H., et al. (1994). Dexamethasone-induced hyperglycemia in obese Avy/a (viable yellow) female mice entails preferential induction of a hepatic estrogen sulfotransferase. Diabetes, 43(8), 999–1004.CrossRefPubMedGoogle Scholar
  27. Gong, H., Guo, P., et al. (2007). Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Molecular Endocrinology, 21(8), 1781–1790.CrossRefPubMedGoogle Scholar
  28. Gong, H., Jarzynka, M. J., et al. (2008). Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Research, 68(18), 7386–7393.CrossRefPubMedGoogle Scholar
  29. Guo, Y., Hu, B., et al. (2015). Estrogen sulfotransferase is an oxidative stress-responsive gene that gender-specifically affects liver ischemia/reperfusion injury. The Journal of Biological Chemistry, 290(23), 14754–14764.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Hattori, K., Yamaguchi, N., et al. (2012). Interferon gamma induces steroid sulfatase expression in human keratinocytes. Biological & Pharmaceutical Bulletin, 35(9), 1588–1593.CrossRefGoogle Scholar
  31. Hobkirk, R. (1985). Steroid sulfotransferases and steroid sulfate sulfatases: Characteristics and biological roles. Canadian Journal of Biochemistry and Cell Biology, 63(11), 1127–1144.CrossRefPubMedGoogle Scholar
  32. Hughes, P. J., Twist, L. E., et al. (2001). Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1alpha, 25-dihydroxyvitamin D3. The Biochemical Journal, 355(Pt 2), 361–371.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Ihunnah, C. A., Wada, T., et al. (2014). Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Molecular and Cellular Biology, 34(9), 1682–1694.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Janowski, B. A., Willy, P. J., et al. (1996). An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature, 383(6602), 728–731.CrossRefPubMedGoogle Scholar
  35. Jiang, M. (2014). The role of steroid sulfatase in energy homeostasis and inflammation (p. 97). PhD. School of Pharmacy, University of Pittsburgh, Pittsburgh.Google Scholar
  36. Jiang, M., He, J., et al. (2014). Hepatic overexpression of steroid sulfatase ameliorates mouse models of obesity and type 2 diabetes through sex-specific mechanisms. The Journal of Biological Chemistry, 289(12), 8086–8097.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Jiang, M., Klein, M., et al. (2016). Inflammatory regulation of steroid sulfatase: A novel mechanism to control estrogen homeostasis and inflammation in chronic liver disease. Journal of Hepatology, 64(1), 44–52.CrossRefPubMedGoogle Scholar
  38. Kakuta, Y., Pedersen, L. G., et al. (1997). Crystal structure of estrogen sulphotransferase. Nature Structural Biology, 4(11), 904–908.CrossRefPubMedGoogle Scholar
  39. Kang, H. S., Angers, M., et al. (2007). Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiological Genomics, 31(2), 281–294.CrossRefPubMedGoogle Scholar
  40. Kauffman, F. C. (2004). Sulfonation in pharmacology and toxicology. Drug Metabolism Reviews, 36(3–4), 823–843.CrossRefPubMedGoogle Scholar
  41. Kawano, H., Yasue, H., et al. (2003). Dehydroepiandrosterone supplementation improves endothelial function and insulin sensitivity in men. The Journal of Clinical Endocrinology and Metabolism, 88(7), 3190–3195.CrossRefPubMedGoogle Scholar
  42. Khor, V. K., Tong, M. H., et al. (2008). Gender-specific expression and mechanism of regulation of estrogen sulfotransferase in adipose tissues of the mouse. Endocrinology, 149(11), 5440–5448.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Khor, V. K., Dhir, R., et al. (2010). Estrogen sulfotransferase regulates body fat and glucose homeostasis in female mice. American Journal of Physiology. Endocrinology and Metabolism, 299(4), E657–E664.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kodama, S., Hosseinpour, F., et al. (2011). Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Research, 39(19), 8392–8403.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Lam, S. T., & Polani, P. E. (1985). Hormonal induction of steroid sulphatase in the mouse. Experientia, 41(2), 276–278.CrossRefPubMedGoogle Scholar
  46. Lawler, H. M., Underkofler, C. M., et al. (2016). Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. The Journal of Clinical Endocrinology and Metabolism, 101(4), 1422–1428.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Leiter, E. H., & Chapman, H. D. (1994). Obesity-induced diabetes (diabesity) in C57BL/KsJ mice produces aberrant trans-regulation of sex steroid sulfotransferase genes. The Journal of Clinical Investigation, 93(5), 2007–2013.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Leowattana, W. (2004). DHEAS as a new diagnostic tool. Clinica Chimica Acta, 341(1–2), 1–15.CrossRefGoogle Scholar
  49. Lipmann, F. (1958). Biological sulfate activation and transfer. Science, 128(3324), 575–580.CrossRefPubMedGoogle Scholar
  50. Lundholm, L., Moverare, S., et al. (2004). Gene expression profiling identifies liver X receptor alpha as an estrogen-regulated gene in mouse adipose tissue. Journal of Molecular Endocrinology, 32(3), 879–892.CrossRefPubMedGoogle Scholar
  51. Mathur, C., Prasad, V. V., et al. (1993). Steroids and their conjugates in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 90(1), 85–88.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Mauvais-Jarvis, F., Clegg, D. J., et al. (2013). The role of estrogens in control of energy balance and glucose homeostasis. Endocrine Reviews, 34(3), 309–338.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Miki, Y., Nakata, T., et al. (2002). Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. The Journal of Clinical Endocrinology and Metabolism, 87(12), 5760–5768.CrossRefPubMedGoogle Scholar
  54. Mueller, J. W., Gilligan, L. C., et al. (2015). The regulation of steroid action by sulfation and desulfation. Endocrine Reviews, 36(5), 526–563.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Nakamura, Y., Miki, Y., et al. (2003). Steroid sulfatase and estrogen sulfotransferase in the atherosclerotic human aorta. The American Journal of Pathology, 163(4), 1329–1339.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Naville, D., Pinteur, C., et al. (2013). Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. The FASEB Journal, 27(9), 3860–3870.CrossRefPubMedGoogle Scholar
  57. Negishi, M., Pedersen, L. G., et al. (2001). Structure and function of sulfotransferases. Archives of Biochemistry and Biophysics, 390(2), 149–157.CrossRefPubMedGoogle Scholar
  58. Newman, S. P., Purohit, A., et al. (2000). Regulation of steroid sulphatase expression and activity in breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 75(4–5), 259–264.CrossRefPubMedGoogle Scholar
  59. Nose, Y., & Lipmann, F. (1958). Separation of steroid sulfokinases. The Journal of Biological Chemistry, 233(6), 1348–1351.PubMedGoogle Scholar
  60. O’Reilly, M. W., Taylor, A. E., et al. (2014). Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: The utility of serum androstenedione. The Journal of Clinical Endocrinology and Metabolism, 99(3), 1027–1036.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Paatela, H., Wang, F., et al. (2016). Steroid sulfatase activity in subcutaneous and visceral adipose tissue: A comparison between pre- and postmenopausal women. European Journal of Endocrinology, 174(2), 167–175.CrossRefPubMedGoogle Scholar
  62. Pasquali, R., Vicennati, V., et al. (2008). Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. International Journal of Obesity, 32(12), 1764–1779.CrossRefPubMedGoogle Scholar
  63. Pasqualini, J. R. (2004). The selective estrogen enzyme modulators in breast cancer: A review. Biochimica et Biophysica Acta, 1654(2), 123–143.PubMedGoogle Scholar
  64. Pasqualini, J. R., Maloche, C., et al. (1994). Effect of the progestagen Promegestone (R-5020) on mRNA of the oestrone sulphatase in the MCF-7 human mammary cancer cells. Anticancer Research, 14(4A), 1589–1593.PubMedGoogle Scholar
  65. Purohit, A., & Foster, P. A. (2012). Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. The Journal of Endocrinology, 212(2), 99–110.CrossRefPubMedGoogle Scholar
  66. Purohit, A., Woo, L. W., et al. (2011). Steroid sulfatase: A pivotal player in estrogen synthesis and metabolism. Molecular and Cellular Endocrinology, 340(2), 154–160.CrossRefPubMedGoogle Scholar
  67. Qian, Y. M., Sun, X. J., et al. (2001). Targeted disruption of the mouse estrogen sulfotransferase gene reveals a role of estrogen metabolism in intracrine and paracrine estrogen regulation. Endocrinology, 142(12), 5342–5350.CrossRefPubMedGoogle Scholar
  68. Reed, M. J., Purohit, A., et al. (2005). Steroid sulfatase: Molecular biology, regulation, and inhibition. Endocrine Reviews, 26(2), 171–202.CrossRefPubMedGoogle Scholar
  69. Reinen, J., & Vermeulen, N. P. (2015). Biotransformation of endocrine disrupting compounds by selected phase I and phase II enzymes – Formation of estrogenic and chemically reactive metabolites by cytochromes P450 and sulfotransferases. Current Medicinal Chemistry, 22(4), 500–527.CrossRefPubMedGoogle Scholar
  70. Ren, S., & Ning, Y. (2014). Sulfation of 25-hydroxycholesterol regulates lipid metabolism, inflammatory responses, and cell proliferation. American Journal of Physiology. Endocrinology and Metabolism, 306(2), E123–E130.CrossRefPubMedGoogle Scholar
  71. Ren, S., Hylemon, P., et al. (2006). Identification of a novel sulfonated oxysterol, 5-cholesten-3beta, 25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. Journal of Lipid Research, 47(5), 1081–1090.CrossRefPubMedGoogle Scholar
  72. Sanchez-Guijo, A., Oji, V., et al. (2015). High levels of oxysterol sulfates in serum of patients with steroid sulfatase deficiency. Journal of Lipid Research, 56(2), 403–412.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Sato, K., Iemitsu, M., et al. (2012). DHEA administration and exercise training improves insulin resistance in obese rats. Nutrition & Metabolism (London), 9, 47.CrossRefGoogle Scholar
  74. Schiffer, L., Kempegowda, P., et al. (2017). Mechanisms in endocrinology: The sexually dimorphic role of androgens in human metabolic disease. European Journal of Endocrinology, 177, R125–R143.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Shah, R., Singh, J., et al. (2016). Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review. European Journal of Medicinal Chemistry, 114, 170–190.CrossRefPubMedGoogle Scholar
  76. Shinozaki, S., Chiba, T., et al. (2007). Site-specific effect of estradiol on gene expression in the adipose tissue of ob/ob mice. Hormone and Metabolic Research, 39(3), 192–196.CrossRefPubMedGoogle Scholar
  77. Simpson, E. R., Misso, M., et al. (2005). Estrogen – The good, the bad, and the unexpected. Endocrine Reviews, 26(3), 322–330.CrossRefPubMedGoogle Scholar
  78. Snyder, V. L., Turner, M., et al. (2000). Tissue steroid sulfatase levels, testosterone and blood pressure. The Journal of Steroid Biochemistry and Molecular Biology, 73(5), 251–256.CrossRefPubMedGoogle Scholar
  79. Song, W. C., Moore, R., et al. (1995). Molecular characterization of a testis-specific estrogen sulfotransferase and aberrant liver expression in obese and diabetogenic C57BL/KsJ-db/db mice. Endocrinology, 136(6), 2477–2484.CrossRefPubMedGoogle Scholar
  80. Strott, C. A. (1996). Steroid sulfotransferases. Endocrine Reviews, 17(6), 670–697.CrossRefPubMedGoogle Scholar
  81. Strott, C. A. (2002). Sulfonation and molecular action. Endocrine Reviews, 23(5), 703–732.CrossRefPubMedGoogle Scholar
  82. Sueyoshi, T., Green, W. D., et al. (2011). Garlic extract diallyl sulfide (DAS) activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver. PLoS One, 6(6), e21229.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Suh, B. Y., Jung, J. J., et al. (2011). Induction of steroid sulfatase expression by tumor necrosis factor-alpha through phosphatidylinositol 3-kinase/Akt signaling pathway in PC-3 human prostate cancer cells. Experimental & Molecular Medicine, 43(11), 646–652.CrossRefGoogle Scholar
  84. Thomas, M. P., & Potter, B. V. (2013). The structural biology of oestrogen metabolism. The Journal of Steroid Biochemistry and Molecular Biology, 137, 27–49.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Tong, M. H., Christenson, L. K., et al. (2004). Aberrant cholesterol transport and impaired steroidogenesis in Leydig cells lacking estrogen sulfotransferase. Endocrinology, 145(5), 2487–2497.CrossRefPubMedGoogle Scholar
  86. Tong, M. H., Jiang, H., et al. (2005). Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice. Nature Medicine, 11(2), 153–159.CrossRefPubMedGoogle Scholar
  87. Trent, S., Dennehy, A., et al. (2012). Steroid sulfatase-deficient mice exhibit endophenotypes relevant to attention deficit hyperactivity disorder. Psychoneuroendocrinology, 37(2), 221–229.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Utsumi, T., Yoshimura, N., et al. (1999). Steroid sulfatase expression is an independent predictor of recurrence in human breast cancer. Cancer Research, 59(2), 377–381.PubMedGoogle Scholar
  89. van Landeghem, A. A., Poortman, J., et al. (1985). Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Research, 45(6), 2900–2906.PubMedGoogle Scholar
  90. Wada, T., Kang, H. S., et al. (2008). Identification of oxysterol 7alpha-hydroxylase (Cyp7b1) as a novel retinoid-related orphan receptor alpha (RORalpha) (NR1F1) target gene and a functional cross-talk between RORalpha and liver X receptor (NR1H3). Molecular Pharmacology, 73(3), 891–899.CrossRefPubMedGoogle Scholar
  91. Wada, T., Ihunnah, C. A., et al. (2011). Estrogen sulfotransferase inhibits adipocyte differentiation. Molecular Endocrinology, 25(9), 1612–1623.PubMedCentralCrossRefPubMedGoogle Scholar
  92. Webster, D., France, J. T., et al. (1978). X-linked ichthyosis due to steroid-sulphatase deficiency. Lancet, 1(8055), 70–72.PubMedGoogle Scholar
  93. Weiss, E. P., Villareal, D. T., et al. (2011). Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging (Albany NY), 3(5), 533–542.CrossRefGoogle Scholar
  94. Ye, J. (2009). Emerging role of adipose tissue hypoxia in obesity and insulin resistance. International Journal of Obesity, 33(1), 54–66.CrossRefPubMedGoogle Scholar
  95. Yen, P. H., Marsh, B., et al. (1988). The human X-linked steroid sulfatase gene and a Y-encoded pseudogene: Evidence for an inversion of the Y chromosome during primate evolution. Cell, 55(6), 1123–1135.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghUSA
  2. 2.Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations