Advertisement

Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation

  • Karen P. Briski
  • Hussain N. Alhamami
  • Ayed Alshamrani
  • Santosh K. Mandal
  • Manita Shakya
  • Mostafa H. H. Ibrahim
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1043)

Abstract

Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body’s far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.

Abbreviations

4CIN

Alpha-cyano-4-hydroxycinnamate

6-OHDA

6-Hydroxydopamine

AICAR

5-Aminoimidazole-4-carboxamide-riboside

AMPK

Adenosine 5′-monophosphate-activated protein kinase

ANLSH

Astrocyte-neuron lactate shuttle hypothesis

ARH

Arcuate hypothalamic nucleus

CA

Catecholamine

CaMMKβ

Ca++/calmodulin-dependent protein kinase-beta

CRH

Corticotropin-releasing hormone

CV4

Caudal fourth ventricle

DAB

1,4-Dideoxy-1,4-imino-d-arabinitol

DBH

Dopamine-beta-hydroxylase

DMH

Dorsomedial hypothalamic nucleus

DVC

Dorsal vagal complex

ERα

Estrogen receptor-alpha

ERβ

Estrogen receptor-beta

FD

Food deprivation

GABA

γ-Aminobutyric acid

GAD65/67

Glutamate decarboxylase65/67

GCK

Glucokinase

GE

Glucose-excited

GI

Glucose-inhibited

GnRH

Gonadotropin-releasing hormone

GP

Glycogen phosphorylase

GS

Glycogen synthase

HAAF

Hypoglycemia-associated autonomic failure

icv

Intracerebroventricular

ir

Immunoreactivity

KATP

ATP-dependent potassium channel

LH

Luteinizing hormone

LHA

Lateral hypothalamic area

NE

Norepinephrine

nNOS

Neuronal nitric oxide synthase

NPY

Neuropeptide Y

OGDH

Alpha ketoglutarate dehydrogenase

ORDX

Orchidectomy

OVX

Ovariectomy

pAMPK

PhosphoAMPK

PFKL

Phosphofructokinase

PHTPP

4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol

PVH

Paraventricular hypothalamic nucleus

RIIH

Recurring insulin-induced hypoglycemia

rPO

Rostral preoptic area

NTS

Nucleus of the solitary tract

T1DM

Type 1 diabetes mellitus

T2DM

Type 2 diabetes mellitus

TCA

Tricarboxylic acid cycle

VMH

Ventromedial hypothalamic nucleus

References

  1. Adachi, A., Kobashi, M., & Funahashi, M. (1995). Glucose-responsive neurons in the brainstem. Obesity Research, 3, 35S–740S.CrossRefGoogle Scholar
  2. Adler, B. A., Johnson, M. D., Lynch, C. O., & Crowley, W. R. (1983). Evidence that norepinephrine and epinephrine systems mediate the stimulatory effects of ovarian hormones on luteinizing hormone and luteinizing hormone-releasing hormone. Endocrinology, 113, 1431–1438.CrossRefPubMedGoogle Scholar
  3. Alenazi, F. S. H., Ibrahim, B. A., & Briski, K. P. (2014). Estradiol regulates effects of hindbrain AICAR administration on hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein expression. Journal of Neuroscience Research, 93, 651–659.CrossRefPubMedGoogle Scholar
  4. Alenazi, F. S. H., Ibrahim, B. A., Alhamami, H., Shakya, M., & Briski, K. P. (2016). Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience, 314, 35–46.CrossRefPubMedGoogle Scholar
  5. Amiel, S. A., Simonsen, D. C., & Tamborlane, W. V. (1987). Rate of glucose fall does not affect counterregulatory hormone response to hypoglycemia in normal and diabetic humans. Diabetes, 36, 518–522.CrossRefPubMedGoogle Scholar
  6. Amiel, S. A., Maran, A., Powrie, J. K., Umpleby, A. M., & Macdonald, I. A. (1993). Gender differences in counterregulation to hypoglycaemia. Diabetologia, 36, 460–464.CrossRefPubMedGoogle Scholar
  7. Andrew, S. F., Dinh, T. T., & Ritter, S. (2007). Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 292, R1792–R1798.CrossRefPubMedGoogle Scholar
  8. Asarian, L., & Geary, N. (2002). Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Hormones and Behavior, 42, 461–471.CrossRefPubMedGoogle Scholar
  9. Asarian, L., & Geary, N. (2006). Modulation of appetite by gonadal steroid hormones. Philosophical Transactions of the Royal Society B, 361, 1251–1263.CrossRefGoogle Scholar
  10. Azcoitia, I., Sierra, A., & Garcia-Segura, L. M. (1999). Localization of estrogen receptor beta-immunoreactivity in astrocytes of the adult rat brain. Glia, 26, 260–267.CrossRefPubMedGoogle Scholar
  11. Balfour, R. H., Hansen, A. M. K., & Trapp, S. (2006). Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. The Journal of Physiology, 570, 469–484.CrossRefPubMedGoogle Scholar
  12. Barros, L. F. (2013). Metabolic signaling by lactate in the brain. Trends in Neurosciences, 36, 396–404.CrossRefPubMedGoogle Scholar
  13. Bolli, C. G., De Feo, P., & Cosmo, S. (1984). A reliable and reproducible test for adequate glucose counterregulation in type 1 diabetes. Diabetes, 33, 732–737.CrossRefPubMedGoogle Scholar
  14. Briski, K. P., & Nedungadi, T. P. (2009). Adaptation of feeding and counter-regulatory hormone responses to intermediate insulin-induced hypoglycaemia in the ovariectomised female rat: Effects of oestradiol. Journal of Neuroendocrinology, 21, 578–585.CrossRefPubMedGoogle Scholar
  15. Briski, K. P., & Patil, G. D. (2005). Induction of Fos immunoreactivity labeling in forebrain metabolic loci by caudal fourth ventricular administration of the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamic acid. Neuroendocrinology, 82, 49–57.CrossRefPubMedGoogle Scholar
  16. Briski, K. P., & Shrestha, P. K. (2016). Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience, 331, 62–71.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Briski, K. P., & Sylvester, P. W. (1998). Effects of the glucose antimetabolite, 2-deoxy-D-glucose (2-DG), on the LH surge and Fos expression by preoptic GnRH neurons in ovariectomized, steroid-primed rats. Journal of Neuroendocrinology, 10, 769–776.CrossRefPubMedGoogle Scholar
  18. Briski, K. P., Koshy Cherian, A., Genabai, N. K., & Vavaiya, K. V. (2009). In situ coexpression of glucose and monocarboxylate transporter mRNAs in metabolic-sensitive dorsal vagal complex catecholaminergic neurons: Transcriptional reactivity to insulin-induced hypoglycemia and caudal hindbrain glucose or lactate repletion during insulin-induced hypoglycemia. Neuroscience, 164, 1152–1160.CrossRefPubMedGoogle Scholar
  19. Briski, K. P., Ibrahim, B. A., & Tamrakar, P. (2014). Energy metabolism and hindbrain AMPK: Regulation by estradiol. Hormone Molecular Biology and Clinical Investigation, 17, 129–136.CrossRefPubMedGoogle Scholar
  20. Bröer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., & Magistretti, P. J. (1997). Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. The Journal of Biological Chemistry, 272, 30096–30102.CrossRefPubMedGoogle Scholar
  21. Brown, A. M. (2004). Brain glycogen re-awakened. Journal of Neurochemistry, 89, 537–552.CrossRefPubMedGoogle Scholar
  22. Butcher, R. L., Collins, W. E., & Fugo, N. W. (1974). Plasma concentrations of LH, FSH, progesterone, and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology, 94, 1704–1708.CrossRefPubMedGoogle Scholar
  23. Chan, O., Zhu, W., Ding, Y., McCrimmon, R., & Sherwin, R. (2006). Blockade of GABAA receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes, 55, 1080–1087.CrossRefPubMedGoogle Scholar
  24. Chan, O., Lawson, M., Zhu, W., Beverly, J. L., & Sherwin, R. (2007). ATP-sensitive K(+) channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia. Diabetes, 56, 1120–1126.CrossRefPubMedGoogle Scholar
  25. Chen, M. D., O’Byrne, K. T., Chiappini, S. E., Hotchkiss, J., & Knobil, E. (1992). Hypoglycemic ‘stress’ and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: Role of the ovary. Neuroendocrinology, 56, 666–673.CrossRefPubMedGoogle Scholar
  26. Chen, J. Q., Brown, T. R., & Russo, J. (2009). Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochimica et Biophysica Acta, 1793, 1128–1143.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cherian, A. K., & Briski, K. P. (2011). Quantitative RT PCR and immunoblot analyses reveal acclimated A2 noradrenergic neuron substrate fuel transporter, glucokinase, phospho-AMPK, and dopamine-beta-hydroxylase responses to hypoglycemia. Journal of Neuroscience Research, 89, 1114–1124.CrossRefPubMedGoogle Scholar
  28. Cherian, A. K., & Briski, K. P. (2012). A2 noradrenergic nerve cell metabolic transducer and nutrient transporter adaptation to hypoglycemia: Impact of estrogen. Journal of Neuroscience Research, 90, 1347–1358.CrossRefPubMedGoogle Scholar
  29. Clarke, I. J., Horton, R. J. E., & Doughton, B. W. (1990). Investigation of the mechanism by which insulin-induced hypoglycemia decreases luteinizing hormone secretion in ovariectomized ewes. Endocrinology, 127, 1470–1476.CrossRefPubMedGoogle Scholar
  30. Cryer, P. E. (1993). Hypoglycemia begets hypoglycemia in IDDM. Diabetes, 42, 1691–1693.Google Scholar
  31. Cryer, P. E. (2001). Hypoglycemia-associated autonomic failure in diabetes. American Journal of Physiology – Endocrinology and Metabolism, 281, E1115–E11121.CrossRefPubMedGoogle Scholar
  32. Cryer, P. E. (2005). Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes, 54, 3592–3601.CrossRefPubMedGoogle Scholar
  33. Davis, S. N., Shavers, C., & Costa, F. (2000). Gender-related differences in counterregulatory responses to antecedent hypoglycemia in normal humans. The Journal of Clinical Endocrinology and Metabolism, 85, 2148–2157.PubMedGoogle Scholar
  34. de Galan, B. E., Schouwenberg, B. J., Tack, C. J., & Smits, P. (2006). Pathophysiology and management of recurrent hypoglycaemia and hypoglycaemia unawareness in diabetes. The Netherlands Journal of Medicine, 64, 269–279.Google Scholar
  35. Debernardi, R., Pierre, K., Lengacher, S., Magistretti, P. J., & Pellerin, L. (2003). Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. Journal of Neuroscience Research, 73, 141–155.CrossRefPubMedGoogle Scholar
  36. Fanelli, C., Pampanelli, S., Epifano, L., Rambotti, A. M., Di Vincenzo, A., Modarelli, F., Ciofetta, M., Lepore, M., Annibale, B., & Torlone, E. (1994). Relative roles of insulin, and hypoglycemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycemia in male and female humans. Diabetologia, 37, 797–807.CrossRefPubMedGoogle Scholar
  37. Giles, E. D., Jackman, M. R., Johnson, G. C., Schedin, P. J., & Houser, J. L. (2010). Effect of the estrous cycle and surgical ovariectomy on energy balance, fuel utilization, and physical activity in lean and obese female rats. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 299, R1634–R1642.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Goodman, R. L. (1978). A quantitative analysis of the physiological role of estradiol and progesterone in the control of tonic and surge secretion of luteinizing hormone in the rat. Endocrinology, 102, 142–150.CrossRefPubMedGoogle Scholar
  39. Gruetter, R. (2003). Glycogen: The forgotten cerebral energy store. Journal of Neuroscience Research, 74, 179–183.CrossRefPubMedGoogle Scholar
  40. Gujar, A. D., Ibrahim, B. A., Tamrakar, P., & Briski, K. P. (2014). Hindbrain nutrient status regulates hypothalamic AMPK activity and hypothalamic metabolic neurotransmitter mRNA and protein responses to hypoglycemia. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 306, R457–R469.CrossRefPubMedGoogle Scholar
  41. Han, S. M., Namkoong, C., Jang, P. G., Park, I. S., Hong, S. W., Katakami, H., Chun, S., Kim, S. W., Park, J. Y., Lee, K. U., & Kim, M. S. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia, 48, 2170–2178.CrossRefPubMedGoogle Scholar
  42. Hardie, D. G. (2003). Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology, 144, 5179–5183.CrossRefPubMedGoogle Scholar
  43. Harik, S. I., Busto, R., & Martinez, E. (1982). Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. The Journal of Neuroscience, 2, 409–414.PubMedGoogle Scholar
  44. Herbison, A. E., & Dyer, D. G. (1991). Effect of luteinizing hormone secretion of GABA receptor modulation in medial preoptic area at the time of proestrous luteinizing hormone surge. Neuroendocrinology, 53, 317–320.Google Scholar
  45. Herzog, R. I., Chan, O., Yu, S., Dziura, J., McNay, E. C., & Sherwin, R. S. (2008). Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology, 149, 1499–1504.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hopkins, D. (2004). Exercise-induced and other daytime hypoglycemic events in patients with diabetes: Prevention and treatment. Diabetes Research and Clinical Practice, 65(Suppl 1), S35–S39.CrossRefPubMedGoogle Scholar
  47. Hösli, E., Rühl, W., & Hösli, L. (2000). Histochemical and electrophysiological evidence for estrogen receptors on cultured astrocytes: Colocalization with cholinergic receptors. International Journal of Developmental Neuroscience, 18, 101–111.CrossRefPubMedGoogle Scholar
  48. Ibrahim, B. A., & Briski, K. P. (2014). Role of dorsal vagal complex A2 noradrenergic neurons in hindbrain glucoprivic inhibition of the luteinizing hormone surge in the steroid-primed ovariectomized female rat: Effects of 5-thioglucose on A2 functional biomarker and AMPK activity. Neuroscience, 269, 199–214.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ibrahim, B. A., & Briski, K. P. (2015). Deferred feeding and body weight responses to short-term interruption of fuel acquisition: Impact of estradiol. Hormone and Metabolic Research, 47, 611–621.PubMedGoogle Scholar
  50. Ibrahim, B., Tamrakar, P., Gujar, A., Koshy Cherian, A., & Brisk, K. P. (2013). Caudal fourth ventricular administration of the AMPK activator 5-aminoimiazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. Journal of Neuroscience Research, 91, 1226–1238.CrossRefPubMedGoogle Scholar
  51. Irwin, R. W., Yao, J., Hamilton, R. T., Cadenas, E., Brinton, R. D., & Nilsen, J. (2008). Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology, 149, 3167–3175.Google Scholar
  52. Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.CrossRefPubMedGoogle Scholar
  53. King, A. B., & Clark, D. (2015). Omitting late-night eating may cause hypoglycemia in “well controlled” basal insulin-treated type 2 diabetes. Endocrine Practice, 21, 280–285.CrossRefPubMedGoogle Scholar
  54. Kostanyan, A., & Nazaryan, K. (1992). Rat brain glycolysis regulation by estradiol-17 beta. Biochimica et Biophysica Acta, 1133, 301–306.CrossRefPubMedGoogle Scholar
  55. Laming, P. R., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Müller, C., Roots, B., & Ng, K. (2000). Neuronal-glial interactions and behaviour. Neuroscience and Biobehavioral Reviews, 24, 295–340.Google Scholar
  56. Li, A. J., Wang, Q., & Ritter, S. (2006). Differential responsiveness of dopamine-beta-hydroxylase gene expression to glucoprivation in different catecholamine cell groups. Endocrinology, 147, 3428–3434.Google Scholar
  57. Mitrakou, A., Mokan, M., & Ryan, C. (1993). Influence of plasma glucose rate of decrease on hierarchy of responses to hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 76, 462–465.PubMedGoogle Scholar
  58. Mizuno, Y., & Oomura, Y. (1984). Glucose responding neurons in the nucleus tractus solitarius of the rat: In vitro study. Brain Research, 307, 109–116.CrossRefPubMedGoogle Scholar
  59. Mufson, E. J., Cai, W. J., Jaffar, S., Chen, E., Stebbins, G., Sendera, T., & Kordower, J. H. (1999). Estrogen receptor immunoreactivity within subregions of the rat forebrain: Neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Research, 849, 253–274.CrossRefPubMedGoogle Scholar
  60. Nedungadi, T. P., & Briski, K. P. (2012). Site-specific effects of intracranial estradiol administration on recurrent insulin-induced hypoglycemia in ovariectomized female rats. Neuroendocrinology, 96, 311–323.CrossRefPubMedGoogle Scholar
  61. Nedungadi, T. P., Golemen, W. L., Paranjape, S. A., Kale, A. Y., & Briski, K. P. (2006). Effects of estradiol on glycemic and CNS neuronal activational responses to recurrent insulin-in-duced hypoglycemia in the ovariectomized female rat. Neuroendocrinology, 84, 235–243.CrossRefPubMedGoogle Scholar
  62. Nehlig, A., Wittendorp-Rechenmann, E., & Lam, C. D. (2004). Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: High-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. Journal of Cerebral Blood Flow and Metabolism, 24, 1004–1014.CrossRefPubMedGoogle Scholar
  63. Nilsen, J., Irwin, R. W., Gallaher, T. K., & Brinton, R. D. (2007). Estradiol in vivo regulation of brain mitochondrial proteome. The Journal of Neuroscience, 27, 14069–14077.Google Scholar
  64. Obel, L. F., Müller, M. S., Walls, A. B., Sickmann, H. M., Bak, L. K., Waagepetarsen, H. S., & Schousboe, A. (2012). Brain glycogen – new perspectives on its metabolic function and regulation at the subcellular level. Frontiers in Neuroenergetics, 4, 15–28.CrossRefGoogle Scholar
  65. Ohkura, S., Tanaka, T., Nagatani, S., Bucholtz, D. C., Tsukamura, H., Maeda, K., & Foster, D. L. (2000). Central, but not peripheral, glucose-sensing mechanisms mediate glucoprivic suppression of pulsatile luteinizing hormone secretion in the sheep. Endocrinology, 141, 4472–4480.CrossRefPubMedGoogle Scholar
  66. Osterlund, M., Kuiper, G. G., Gustafsson, J. A., & Hurd, Y. L. (1998). Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Research Molecular Brain Research, 54, 175–180.CrossRefPubMedGoogle Scholar
  67. Oz, G., Kumar, A., Rao, J. P., Kodl, C. T., Chow, L., Eberly, L. E., & Seaquist, E. R. (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes, 58, 1978–1985.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Paranpape, S. A., & Briski, K. P. (2005). Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience, 130, 957–970.CrossRefGoogle Scholar
  69. Patil, G. D., & Briski, K. P. (2005). Lactate is a critical ‘sensed’ variable in caudal hindbrain monitoring of CNS metabolic stasis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 289, R1777–R1786.CrossRefPubMedGoogle Scholar
  70. Pellerin, L. (2003). Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochemistry International, 43, 331–338.CrossRefPubMedGoogle Scholar
  71. Pellerin, L., & Magistretti P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629.Google Scholar
  72. Pellerin, L., Stolz, M., Sorg, O., Martin, J. L., Deschepper, C. F., & Magistretti, P. J. (1997). Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia, 21, 74–83.CrossRefPubMedGoogle Scholar
  73. Pierre, K., Pellerin, L., Debernardi, R., Riederer, B. M., & Magistretti, P. J. (2000). Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience, 100, 617–627.CrossRefPubMedGoogle Scholar
  74. Raju, B., McGregor, V. P., & Cryer, P. E. (2003). Cortisol elevations comparable to those that occur during hypoglycemia do not cause hypoglycemia-associated autonomic failure. Diabetes, 52, 2083–2089.CrossRefPubMedGoogle Scholar
  75. Rinaman, L. (2011). Hindbrain noradrenergic A2 neurons: Diverse roles in autonomic, endocrine, cognitive, and behavioral functions. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 300, R222–R235.CrossRefPubMedGoogle Scholar
  76. Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E., & Aja, S. (2009). AMPK in the brain: Its roles in energy balance and neuroprotection. Journal of Neurochemistry, 109, 17–23.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z., & Zhou, C. (2014). Hypothalamic glucose sensing: Making ends meet. Frontiers in Systems Neuroscience, 8, 236. https://doi.org/10.3389/fnsys.2014.00236.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sanders, N. M., Figlewicz, D. P., Taborsky, G. J., Jr., Wilkinson, C. W., Daumen, W., & Levin, B. E. (2006). Feeding and neuroendocrine responses after recurrent insulin-induced hypoglycemia. Physiology & Behavior, 87, 700–706.CrossRefGoogle Scholar
  79. Santiago, J. V., Clarke, W. L., & Shah, S. D. (1980). Epinephrine, norepinephrine, glucagon and growth hormone release in association with physiologic decrements in the plasma glucose concentration in normal and diabetic man. The Journal of Clinical Endocrinology and Metabolism, 51, 877–883.CrossRefPubMedGoogle Scholar
  80. Seale, J. V., Wood, S. A., Atkinson, H. C., Harbuz, M. S., & Lightman, S. L. (2004). Gonadal steroid replacement reverses gonadectomy-induced changes in the corticosterone pulse profile and stress-induced hypothalamic-pituitary-adrenal axis activity of male and female rats. Journal of Neuroendocrinology, 16, 989–998.Google Scholar
  81. Shrestha, P. K., & Briski, K. P. (2015). Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat. Neuroscience, 298, 467–474.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shrestha, P. K., Tamrakar, P., Ibrahima, B. A., & Briski, K. P. (2014). Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity. Neuroscience, 278, 20–30.CrossRefPubMedGoogle Scholar
  83. Shughrue, P. J., Lane, M. V., & Merchenthaler, I. (1997). Comparative distribution of estrogen receptor-alpha and beta mRNA in the rat central nervous system. The Journal of Comparative Neurology, 388, 507–525.CrossRefPubMedGoogle Scholar
  84. Spence, R. D., Wisdom, A. J., Cao, Y., Hill, H. M., Mongerson, C. R., Stapornkul, B., Itoh, N., Sofroniew, M. V., & Voskuhl, R. R. (2013). Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. The Journal of Neuroscience, 33, 10924–10933.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stobart, J. L., & Anderson, C. M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Frontiers in Cellular Neuroscience, 7, 38. https://doi.org/10.3389/fncel.2013.00038.
  86. Suh, S. W., Bergher, J. P., Anderson, C. M., Treadway, J. L., Fosgerau, K., & Swanson, R. A. (2007). Astrocyte glycogen sustains neuronal activity during hypoglycemia: Studies with the glycogen phosphorylase inhibitor CP-316,819([R-R*,S*]-5-chloro-N-[2-hdroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl) propyl]-1H-indole-2-carboxamide). The Journal of Pharmacology and Experimental Therapeutics, 321, 45–50.CrossRefPubMedGoogle Scholar
  87. Tamrakar, P., & Briski, K. P. (2017). Impact of recurrent hypoglycemic stress on metabolic signaling in dorsal vagal complex neurons: Modulation by estradiol. Acta Neurobiologiae Experimentalis, 77, 31–44.Google Scholar
  88. Tamrakar, P., Ibrahim, B. A., Gujar, A. K., & Briski, K. P. (2015a). Estrogen regulates energy metabolic pathway and upstream AMPK kinase and phosphatase enzyme expression in dorsal vagal complex metabolo-sensory neurons during glucostasis and hypoglycemia. Journal of Neuroscience Research, 93, 321–332.CrossRefPubMedGoogle Scholar
  89. Tamrakar, P., Shrestha, P. K., & Briski, K. P. (2015b). Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience, 292, 34–45.CrossRefPubMedGoogle Scholar
  90. ter Haar, M. B. (1972). Circadian and estrual rhythms in food intake in the rat. Hormones and Behavior, 3, 219–225.Google Scholar
  91. Vavaiya, K. V., & Briski, K. P. (2007). Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats. Brain Research, 1176, 62–70.CrossRefPubMedGoogle Scholar
  92. Vavaiya, K. V., & Briski, K. P. (2008). Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. Journal of Neuroscience Research, 86, 694–701.CrossRefPubMedGoogle Scholar
  93. Wade, G. N., & Jones, J. E. (2004). Neuroendocrinology of nutritional infertility. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 287, R1227–R1296.Google Scholar
  94. White, N. H., Skor, D., Cryer, P. E., Bier, D. M., Levandoski, L., & Santiago, J. V. (1983). Identification of type 1 diabetic patients at increased risk for hypoglycemia during intensive therapy. The New England Journal of Medicine, 308, 485–491.CrossRefPubMedGoogle Scholar
  95. Wise, P. M., Rance, N., & Barraclough, C. A. (1981). Effects of estradiol and progesterone on catecholamine turn-over rates in discrete hypothalamic regions in ovariectomized rats. Endocrinology, 108, 2186–2193.CrossRefPubMedGoogle Scholar
  96. Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J., & Weber, B. (2011). In vivo evidence for lactate as a neuronal energy source. The Journal of Neuroscience, 31, 7477–7485.CrossRefPubMedGoogle Scholar
  97. Zhu, W., Czyzyk, D., Paranjape, S. A., Zhou, L., Horblitt, A., Szabo, G., Seashore, M. R., & Sherwin, R. (2010). Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American Journal of Physiology – Endocrinology and Metabolism, 298, E971–E977.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Karen P. Briski
    • 1
  • Hussain N. Alhamami
    • 1
  • Ayed Alshamrani
    • 1
  • Santosh K. Mandal
    • 1
  • Manita Shakya
    • 1
  • Mostafa H. H. Ibrahim
    • 1
  1. 1.Department of Basic Pharmaceutical SciencesSchool of Pharmacy, University of Louisiana at MonroeMonroeUSA

Personalised recommendations