Advertisement

A Similarity-Based Abstract Argumentation Approach to Extractive Text Summarization

  • Stefano FerilliEmail author
  • Andrea Pazienza
  • Sergio Angelastro
  • Alessandro Suglia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)

Abstract

Sentence-based extractive summarization aims at automatically generating shorter versions of texts by extracting from them the minimal set of sentences that are necessary and sufficient to cover their content. Providing effective solutions to this task would allow the users to save time in selecting the most appropriate documents to read for satisfying their information needs or for supporting their decision-making tasks. This paper proposes 2 contributions: (i) it defines a novel approach, based on abstract argumentation, to select the sentences in a text that are to be included in the summary; (ii) it proposes a new strategy for similarity assessment among sentences, adopting a different similarity measure than those traditionally exploited in the literature. The effectiveness of the proposed approach was confirmed by experimental results obtained on the English subset of the benchmark MultiLing2015 dataset.

Keywords

Text summarization Information extraction Abstract argumentation 

Notes

Acknowledgments

This work was partially funded by the Italian PON 2007-2013 project PON02_00563_3489339 ‘Puglia@Service’.

References

  1. 1.
    Banerjee, S., Mitra, P., Sugiyama, K.: Multi-document abstractive summarization using ILP based multi-sentence compression. In: IJCAI 2015 (2015)Google Scholar
  2. 2.
    Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: ACM SIGIR, pp. 335–336. ACM (1998)Google Scholar
  3. 3.
    Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005).  https://doi.org/10.1007/11518655_33 CrossRefGoogle Scholar
  4. 4.
    Davis, S.T., et al.: OCCAMS—an optimal combinatorial covering algorithm for multi-document summarization. In: ICDMW, pp. 454–463. IEEE (2012)Google Scholar
  5. 5.
    De Marneffe, M., Manning, C.D.: The Stanford typed dependencies representation. In: Coling 2008, pp. 1–8. ACL (2008)Google Scholar
  6. 6.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dunne, P.E., et al.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ferilli, S., Biba, M., Di Mauro, N., Basile, T.M.A., Esposito, F.: Plugging taxonomic similarity in first-order logic horn clauses comparison. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 131–140. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10291-2_14 CrossRefGoogle Scholar
  9. 9.
    Ferreira, R., et al.: Assessing sentence scoring techniques for extractive text summarization. Expert Syst. Appl. 40(14), 5755–5764 (2013)CrossRefGoogle Scholar
  10. 10.
    Ferreira, R., et al.: A new sentence similarity assessment measure based on a three-layer sentence representation. In: DocEng, pp. 25–34. ACM (2014)Google Scholar
  11. 11.
    Giannakopoulos, G., et al.: Multiling 2015: multilingual summarization of single and multi-documents, on-line fora, and call-center conversations. In: SIGDIAL, pp. 270–274 (2015)Google Scholar
  12. 12.
    Gupta, P., et al.: Summarizing text by ranking text units according to shallow linguistic features. In: ICACT, pp. 1620–1625. IEEE (2011)Google Scholar
  13. 13.
    Lin, C.: Rouge: a package for automatic evaluation of summaries. In: ACL-04 Workshop, vol. 8 (2004)Google Scholar
  14. 14.
    Lloret, E., Palomar, M.: Text summarisation in progress: a literature review. Artif. Intell. Rev. 37(1), 1–41 (2012)CrossRefGoogle Scholar
  15. 15.
    Manning, C.D., et al.: The Stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)Google Scholar
  16. 16.
    Mihalcea, R., Tarau, P.: TextRank: bringing order into texts. In: Association for Computational Linguistics (2004)Google Scholar
  17. 17.
    Miller, G.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer, Boston (2012)CrossRefGoogle Scholar
  19. 19.
    Rotella, F., Leuzzi, F., Ferilli, S.: Learning and exploiting concept networks with ConNeKTion. Appl. Intell. 42(1), 87–111 (2015)CrossRefGoogle Scholar
  20. 20.
    Shardan, R., Kulkarni, U.: Implementation and evaluation of evolutionary connectionist approaches to automated text summarization (2010)Google Scholar
  21. 21.
    Umam, K., et al.: Coverage, diversity, and coherence optimization for multi-document summarization. Jurnal Ilmu Komputer dan Informasi 8(1), 1–10 (2015)CrossRefGoogle Scholar
  22. 22.
    Vasilescu, F., Langlais, P., Lapalme, G.: Evaluating variants of the lesk approach for disambiguating words. In: Lrec (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefano Ferilli
    • 1
    Email author
  • Andrea Pazienza
    • 1
  • Sergio Angelastro
    • 1
  • Alessandro Suglia
    • 1
  1. 1.Dipartimento di InformaticaUniversità di BariBariItaly

Personalised recommendations