Advertisement

Collision Avoidance Dynamics Among Heterogeneous Agents: The Case of Pedestrian/Vehicle Interactions

  • Stefania Bandini
  • Luca CrocianiEmail author
  • Claudio Feliciani
  • Andrea Gorrini
  • Giuseppe Vizzari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)

Abstract

The dynamics of agent-based models and systems provides a framework to face complex issues related to the management of future cities, such as transportation and mobility. Once validated against empirical data, the use of agent-based simulations allows to envision and analyse complex phenomena, not directly accessible from the real world, in a predictive and explanatory scheme. In this paper, we apply this paradigm by proposing an agent-based simulation system focused on pedestrian/vehicle interactions at non-signalized intersections. The model has been designed based on the results gathered by means of an observation, executed at a non-signalized intersection characterized by a relevant number of pedestrian-car accidents in the past years. Manual video-tracking analyses showed that the interactions between pedestrians and vehicles at the zebra cross are generally composed of three phases: (i) the pedestrian freely walks on the side-walk approaching the zebra; (ii) at the proximity of the curb, he/she slows down to evaluate the safety gap from approaching cars to cross, possibly yielding to let the car pass (appraising); (iii) the pedestrian starts crossing. The overall heterogeneous system is composed of two types of agents (i.e. vehicle and pedestrian agents), defining the subjects of the interactions under investigation. The system is used to reproduce the observed traffic conditions and analyse the potential effects of overloading the system on comfort and safety of road users.

Keywords

Agent-based modelling Simulation Collision avoidance 

References

  1. 1.
    Bandini, S., Crociani, L., Gorrini, A., Vizzari, G.: An agent-based model of pedestrian dynamics considering groups: a real world case study. In: 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, pp. 572–577 (2014)Google Scholar
  2. 2.
    Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous pedestrian walking speed in discrete simulation models. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow 2013, pp. 273–279. Springer International Publishing, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-10629-8_33
  3. 3.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A: Stat. Mech. Appl. 295(3–4), 507–525 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Campanella, M., Hoogendoorn, S., Daamen, W.: Quantitative and qualitative validation procedure for general use of pedestrian models. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 891–905. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-02447-9_74
  5. 5.
    Crociani, L., Lämmel, G., Park, H.J., Vizzari, G.: Cellular automaton based simulation of large pedestrian facilities–a case study on the staten island ferry terminals. In: Transportation Research Board 96th Annual Meeting, Washington DC, United States, pp. 17–05137 (2017)Google Scholar
  6. 6.
    Crociani, L., Lämmel, G., Vizzari, G.: Multi-scale simulation for crowd management: a case study in an urban scenario. In: Osman, N., Sierra, C. (eds.) AAMAS 2016. LNCS, vol. 10002, pp. 147–162. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46882-2_9 CrossRefGoogle Scholar
  7. 7.
    Crociani, L., Vizzari, G.: An integrated model for the simulation of pedestrian crossings. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 670–679. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11520-7_71 Google Scholar
  8. 8.
    Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transp. Res. Part C: Emerg. Technol. 37, 193–209 (2013)CrossRefGoogle Scholar
  9. 9.
    Feliciani, C., Crociani, L., Gorrini, A., Vizzari, G., Bandini, S., Nishinari, K.: A simulation model for non-signalized pedestrian crosswalks based on evidence from on field observation. Intelligenza Artificiale (2017, in Press)Google Scholar
  10. 10.
    Gipps, P.: A behavioural car-following model for computer simulation (1981)Google Scholar
  11. 11.
    Godara, A., Lassarre, S., Banos, A.: Simulating pedestrian-vehicle interaction in an urban network using cellular automata and multi-agent models. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow’05, pp. 411–418. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-47641-2_37
  12. 12.
    Gorrini, A., Vizzari, G., Bandini, S.: Towards modelling pedestrian-vehicle interactions: empirical study on urban unsignalized intersection. In: Proceedings of Pedestrian and Evacuation Dynamics 2016, pp. 25–33 (2016)Google Scholar
  13. 13.
    Helbing, D., Jiang, R., Treiber, M.: Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72(4), 046130-1–046130-10 (2005)CrossRefGoogle Scholar
  14. 14.
    Masthoff, J., Vasconcelos, W.W., Aitken, C., Correa da Silva, F.: Agent-based group modelling for ambient intelligence. In: AISB Symposium on Affective Smart Environments, Newcastle, UK (2007)Google Scholar
  15. 15.
    National Research Council, Washington, DC: Highway Capacity Manual (2010)Google Scholar
  16. 16.
    Varhelyi, A.: Drivers’ speed behaviour at a zebra crossing: a case study. Accident Anal. Prevent. 30(6), 731–743 (1998)CrossRefGoogle Scholar
  17. 17.
    Weidmann, U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaftendes Fussgängerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen und Eisenbahnbau IVT an der ETH Zürich (1993)Google Scholar
  18. 18.
    World Health Organization: Global status report on road safety 2015. WHO (2015)Google Scholar
  19. 19.
    Zeng, W., Chen, P., Nakamura, H., Iryo-Asano, M.: Application of social force model to pedestrian behavior analysis at signalized crosswalk. Transp. Res. Part C: Emerg. Technol. 40, 143–159 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefania Bandini
    • 1
    • 2
  • Luca Crociani
    • 1
    Email author
  • Claudio Feliciani
    • 2
  • Andrea Gorrini
    • 1
  • Giuseppe Vizzari
    • 1
  1. 1.CSAI Research CenterUniversità degli studi di Milano - BicoccaMilanItaly
  2. 2.RCASTThe University of TokyoTokyoJapan

Personalised recommendations