Skip to main content

Deciding Refinement Relation in Belief-Intention Databases

  • Conference paper
  • First Online:
AI*IA 2017 Advances in Artificial Intelligence (AI*IA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10640))

Included in the following conference series:

  • 1347 Accesses

Abstract

Bratman’s Belief-Desire-Intention (BDI) theory is seminal in the literature on BDI agents. His BDI theory is taken into account to extend Shoham’s database perspective on beliefs and intentions. In the extended framework, an intentions is considered as a high-level action, which cannot be executed directly, with a duration. They have to be progressively refined until executable basic actions are obtained. Higher- and lower-level actions are linked by the means-end relation, alias instrumentality relation. In this paper, we investigate the complexity of the decision problems for satisfiability, consequence, refinement and instrumentality in the database. Moreover, we translate these problems into the satisfiability and validity problems in propositional linear temporal logic (\(\mathsf {PLTL}\)). With such translations, we can utilize the efficient automated theorem provers for \(\mathsf {PLTL}\) to solve the problem of deciding the refinement relation between an intention and an intention set, as well as the instrumentality relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Several theorem provers for \(\mathsf {PLTL}\) can be found on

    http://users.cecs.anu.edu.au/~rpg/PLTLProvers/ (accessed on 2 Sep. 2017).

  2. 2.

    For the database, time points are encoded in a binary way while they are considered as decimal in the size of the resulted \(\mathsf {PLTL}\) formula. Therefore, the size of the resulted formula is not polynomial with respect to the size of the database.

References

  1. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8

    Chapter  Google Scholar 

  2. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI), Menlo Park, CA, vol. 20, pp. 689–694. AAAI Press, MIT Press, Cambridge 1999 (2005)

    Google Scholar 

  3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: Proceedings of the 36th annual ACM/IEEE Design Automation Conference, pp. 317–320. ACM (1999)

    Google Scholar 

  4. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cambridge (1987). (reedited 1999 with CSLI Publications)

    Google Scholar 

  5. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. J. Comput. Intell. 4, 349–355 (1988)

    Article  Google Scholar 

  6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell. 69(1), 165–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. J. Artif. Intell. 42(2), 213–261 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library using transition-based generalized büchi automata. In: Proceedings of the IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS 2004), pp. 76–83. IEEE (2004)

    Google Scholar 

  10. Emerson, E.A.: Temporal and modal logic. Handb. Theor. Comput. Sci. Volume B: Formal Models Sematics (B) 995(1072), 5 (1990)

    MATH  Google Scholar 

  11. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old problems, new perspectives. KI - Künstliche Intelligenz 31(1), 73–83 (2017)

    Article  Google Scholar 

  12. Herzig, A., Perrussel, L., Xiao, Z.: On hierarchical task networks. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 551–557. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_38

    Chapter  Google Scholar 

  13. Herzig, A., Perrussel, L., Xiao, Z., Zhang, D.: Refinement of intentions. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 558–563. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_39

    Chapter  Google Scholar 

  14. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent programming languages: a formal approach. In: Proceedings of the 5th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1001–1008 (2006)

    Google Scholar 

  15. Shilov, N.V.: Designing tableau-like axiomatization for propositional linear temporal logic at home of arthur prior. Bull. Novosibirsk Comput. Cent. Ser.: Comput. Sci. 23, 113–136 (2005)

    MATH  Google Scholar 

  16. Shoham, Y.: Logical theories of intention and the database perspective. J. Philos. Logic 38(6), 633–647 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wolper, P.: The tableau method for temporal logic: an overview. Logique et Analyse 28(110–111), 119–136 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments.

The work was supported by Chinese Scholarship Council and the project ANR-11-LABX-0040-CIMI within ANR-11-IDEX-0002-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhao Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Z., Herzig, A., Perrussel, L., Zhang, D. (2017). Deciding Refinement Relation in Belief-Intention Databases. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds) AI*IA 2017 Advances in Artificial Intelligence. AI*IA 2017. Lecture Notes in Computer Science(), vol 10640. Springer, Cham. https://doi.org/10.1007/978-3-319-70169-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70169-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70168-4

  • Online ISBN: 978-3-319-70169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics