Advertisement

A Neural Network Model for Social-Aware Recommendation

  • Lin Xiao
  • Zhang Min
  • Liu Yiqun
  • Ma Shaoping
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10648)

Abstract

Social-aware recommender systems have been popular with the rapid growth of social media applications. Existing approaches have attempted to accommodate social information into typical Collaborative Filtering methods and achieved significant improvements. Neural networks are gaining increasing interests in information retrieval tasks. However few studies have considered applying neural network in social-aware recommendation tasks. In this paper, we aim to fill this gap and propose a social-aware neural recommender system. Extensive experiments on real-world datasets demonstrate that our model outperforms state-of-art approaches significantly.

Notes

Acknowledgement

This work was supported by Natural Science Foundation (61532011, 61672311) of China and National Key Basic Research Program (2015CB358700).

References

  1. 1.
    Chaney, A.J., Blei, D.M., Eliassi-Rad, T.: A probabilistic model for using social networks in personalized item recommendation. In: Recsys (2015)Google Scholar
  2. 2.
    Georgiev, K., Nakov, P.: A non-iid framework for collaborative filtering with restricted Boltzmann machines. In: Proceedings of the 30th International Conference on Machine Learning (ICML-2013), pp. 1148–1156 (2013)Google Scholar
  3. 3.
    Guo, G., Zhang, J., Yorke-Smith, N.: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In: AAAI (2015)Google Scholar
  4. 4.
    Jamali, M., Ester, M.: Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: KDD (2009)Google Scholar
  5. 5.
    Jamali, M., Ester, M.: Using a trust network to improve top-n recommendation. In: Recsys (2009)Google Scholar
  6. 6.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM, New York (2008). http://doi.acm.org/10.1145/1401890.1401944
  7. 7.
    Krohn-Grimberghe, A., Drumond, L., Freudenthaler, C., Schmidt-Thieme, L.: Multi-relational matrix factorization using Bayesian personalized ranking for social network data. In: WSDM (2012)Google Scholar
  8. 8.
    Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: AISTATS, vol. 6, p. 622 (2011)Google Scholar
  9. 9.
    Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems, pp. 2177–2185 (2014)Google Scholar
  10. 10.
    Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic matrix factorization. In: CIKM (2008)Google Scholar
  11. 11.
    Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: WSDM (2011)Google Scholar
  12. 12.
    Rafailidis, D., Crestani, F.: Joint collaborative ranking with social relationships in top-n recommendation. In: CIKM (2016)Google Scholar
  13. 13.
    Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 713–719. ACM (2005)Google Scholar
  14. 14.
    Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 3–6 December 2007, pp. 1257–1264 (2007). http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization
  15. 15.
    Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 791–798. ACM, New York (2007). http://doi.acm.org/10.1145/1273496.1273596
  16. 16.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 285–295. ACM, New York (2001). http://doi.acm.org/10.1145/371920.372071
  17. 17.
    Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing for fast similarity search. Proc. VLDB Endowment 5(5), 430–441 (2012)CrossRefGoogle Scholar
  18. 18.
    Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015 Companion, pp. 111–112. ACM, New York (2015). http://doi.acm.org/10.1145/2740908.2742726
  19. 19.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)Google Scholar
  20. 20.
    Tang, J., Wang, S., Hu, X., Yin, D., Bi, Y., Chang, Y., Liu, H.: Recommendation with social dimensions. In: AAAI (2016)Google Scholar
  21. 21.
    Wang, X., Lu, W., Ester, M., Wang, C., Chen, C.: Social recommendation with strong and weak ties. In: CIKM (2016)Google Scholar
  22. 22.
    Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.J.: COFI RANK - maximum margin matrix factorization for collaborative ranking. In: NIPS (2008)Google Scholar
  23. 23.
    Yang, B., Lei, Y., Liu, D., Liu, J.: Social collaborative filtering by trust. In: IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013 (2013). http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6750
  24. 24.
    Yang, B., Lei, Y., Liu, J., Li, W.: Social collaborative filtering by trust. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1633–1647 (2016)CrossRefGoogle Scholar
  25. 25.
    Ye, M., Liu, X., Lee, W.C.: Exploring social influence for recommendation: a generative model approach. In: SIGIR (2012)Google Scholar
  26. 26.
    Zhang, S., Wang, W., Ford, J., Makedon, F.: Learning from incomplete ratings using non-negative matrix factorization. In: SDM, vol. 6, pp. 548–552. SIAM (2006)Google Scholar
  27. 27.
    Zhao, T., McAuley, J., King, I.: Leveraging social connections to improve personalized ranking for collaborative filtering. In: CIKM (2014)Google Scholar
  28. 28.
    Zhao, W.X., Huang, J., Wen, J.-R.: Learning distributed representations for recommender systems with a network embedding approach. In: Ma, S., Wen, J.-R., Liu, Y., Dou, Z., Zhang, M., Chang, Y., Zhao, X. (eds.) AIRS 2016. LNCS, vol. 9994, pp. 224–236. Springer, Cham (2016). doi: 10.1007/978-3-319-48051-0_17 CrossRefGoogle Scholar
  29. 29.
    Zheng, Y., Tang, B., Ding, W., Zhou, H.: A neural autoregressive approach to collaborative filtering. arXiv preprint arXiv:1605.09477 (2016)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Interdisciplinary Information SciencesTsinghua UniversityBeijingChina
  2. 2.Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations