Deep Sequence-to-Sequence Neural Networks for Ionospheric Activity Map Prediction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10638)


The ability to predict the ionosphere activity is of interest for several applications such as satellite telecommunications or Global Navigation Satellite Systems (GNSS). A few studies have proposed models able to predict Total Electron Content (TEC) values of the ionosphere locally over measuring stations, but not worldwide for most of them. We propose a method using Deep Neural Networks (DNN) to predict a sequence of global TEC maps consecutive to an input sequence of past TEC maps, by combining Convolutional Neural Networks (CNNs) with convolutional Long Short-Term Memory (LSTM) networks. The numerical experiments show that the approach provides significant improvement over methods implemented for benchmarking and is competitive with state-of-the-art methods while providing global TEC predictions. The proposed architecture can be adapted to any sequence-to-sequence prediction problem.


Sequence prediction Neural network Forecasting TEC Ionosphere Deep learning CNN LSTM 


  1. 1.
    Datta-Barua, S., Lee, J., Pullen, S., Luo, M., Ene, A., Qiu, D., Zhang, G., Enge, P.: Ionospheric threat parameterization for local area GPS-based aircraft landing systems. J. Aircraft 47(4), 1141–1151 (2010)CrossRefGoogle Scholar
  2. 2.
    Lee, J., Datta-Barua, S., Zhang, G., Pullen, S., Enge, P.: Observations of low-elevation ionospheric anomalies for ground-based augmentation of GNSS. Radio Sci. 46(6), 1–11 (2011)CrossRefGoogle Scholar
  3. 3.
    Tulunay, E., Senalp, E.T., Cander, L.R., Tulunay, Y.K., Bilge, A.H., Mizrahi, E., Kouris, S.S., Jakowski, N.: Development of algorithms and software for forecasting, nowcasting and variability of TEC. Ann. Geophys. 47(2/3), 1201–1214 (2004). (Supplement to Volume 47)Google Scholar
  4. 4.
    Millward, G.H., Muller-Wodarg, I.C.F., Aylward, A.D., Fuller-Rowell, T.J., Richmond, A.D., Moffett, R.J.: An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J. Geophys. Res.: Space Phys. 106(A11), 24733–24744 (2001)CrossRefGoogle Scholar
  5. 5.
    Chunli, D., Jinsong, P.: Modeling and prediction of TEC in China region for satellite navigation. In: 2009 15th Asia-Pacific Conference on Communications. pp. 310–313, October 2009Google Scholar
  6. 6.
    Elmunim, N.A., Abdullah, M., Hasbi, A.M.: Improving ionospheric forecasting using statistical method for accurate GPS positioning over Malaysia. In: 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), pp. 352–355, November 2016Google Scholar
  7. 7.
    Li, X., Guo, D.: Modeling and prediction of ionospheric total electron content by time series analysis. In: 2010 2nd International Conference on Advanced Computer Control, vol. 2, pp. 375–379, March 2010Google Scholar
  8. 8.
    Niu, R., Guo, C., Zhang, Y., He, L., Mao, Y.: Study of ionospheric TEC short-term forecast model based on combination method. In: 2014 12th International Conference on Signal Processing (ICSP), pp. 2426–2430, October 2014Google Scholar
  9. 9.
    Zhenzhong, X., Weimin, W., Bo, W.: Ionosphere TEC prediction based on Chaos. In: ISAPE2012, pp. 458–460, October 2012Google Scholar
  10. 10.
    Tulunay, E., Senalp, E.T., Radicella, S.M., Tulunay, Y.: Forecasting total electron content maps by neural network technique. Radio Sci. 41(4) (2006)Google Scholar
  11. 11.
    Wu, Y.W., Liu, R.Y., Jian-Ping, W., Wu, Z.S.: Ionospheric TEC short-term forecasting in CHINA. In: Proceedings of 9th International Symposium on Antennas, Propagation and EM Theory, pp. 418–421, November 2010Google Scholar
  12. 12.
    Huang, Z., Yuan, H.: Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci. 49(4), 283–292 (2014)CrossRefGoogle Scholar
  13. 13.
    Senalp, E.T., Tulunay, E., Tulunay, Y.: Total electron content (TEC) forecasting by cascade modeling: a possible alternative to the IRI-2001. Radio Sci. 43(4) (2008)Google Scholar
  14. 14.
    Jakowski, N., Hoque, M.M., Mayer, C.: A new global TEC model for estimating transionospheric radio wave propagation errors. J. Geodesy 85(12), 965–974 (2011)CrossRefGoogle Scholar
  15. 15.
    Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description. CoRR abs/1411.4389 (2014)Google Scholar
  16. 16.
    Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in NIPS, pp. 802–810 (2015)Google Scholar
  17. 17.
    Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th ICCV, pp. 2146–2153, September 2009Google Scholar
  18. 18.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  19. 19.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21735-7_7 CrossRefGoogle Scholar
  20. 20.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Webb, D.F.: Coronal mass ejections: origins, evolution, and role in space weather. IEEE Trans. Plasma Sci. 28(6), 1795–1806 (2000)CrossRefGoogle Scholar
  22. 22.
    Wells, H.W.: Effects of Solar activity on the ionosphere and radio communications. Proc. IRE 31(4), 147–157 (1943)CrossRefGoogle Scholar
  23. 23.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ONERA, The French Aerospace LabPalaiseauFrance

Personalised recommendations