Advertisement

Polymer Waveguide-Based Reservoir Computing

  • Jean Benoit Héroux
  • Hidetoshi Numata
  • Daiju Nakano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10639)

Abstract

Polymer waveguide optical interconnect technology, in which VCSEL and photodiode chip arrays are flip-mounted on an organic carrier to fabricate optical multi-chip modules, has been intensively developed over the last 15 years for data transfer applications in high performance computers. In that application, multiple-channel data signals transmitted to and from CPU and memory components in a system are converted into optical signals for short range, high density, high speed, low power and low cost digital communication. In this work we explore how these efforts could be leveraged to fabricate a compact, fully integrated photonic reservoir computing module with several devices potentially operating in parallel. We present experimental results of low optical loss in a crossing structure as well as good performance simulated with realistic parameters of a time-multiplexed reservoir performing a signal recovery task.

Keywords

Reservoir computing Photonics VCSEL Waveguide Array Multi-chip module 

References

  1. 1.
    Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)CrossRefGoogle Scholar
  2. 2.
    Furber, S., Galluppi, F., Temple, S., Plana, L.: The spinnaker project. Proc. IEEE 102, 652–665 (2014)CrossRefGoogle Scholar
  3. 3.
    Prucnal, P.R., Shastri, B.J., de Lima, T.F., Nahmias, M.A., Tait, A.N.: Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Optics Photonics 8, 228–299 (2016)CrossRefGoogle Scholar
  4. 4.
    Jaeger, H.: The ‘echo state’ approach to analyzing and training recurrent neural networks - with an erratum note, Technical report GMD Report Number 148, Fraunhofer Institute for Autonomous Intelligent Systems (2011)Google Scholar
  5. 5.
    Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)CrossRefGoogle Scholar
  6. 6.
    Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)CrossRefGoogle Scholar
  7. 7.
    Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)CrossRefGoogle Scholar
  8. 8.
    Dejonckheere, A., Duport, F., Smerieri, A., Fang, L., Oudar, J.-L., Haelterman, M., Massar, S.: All-optical reservoir computer based on saturation of absorption. Opt. Express 22, 10868–10881 (2014)CrossRefGoogle Scholar
  9. 9.
    Larger, L., Baylon-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K., Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017)Google Scholar
  10. 10.
    Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)CrossRefGoogle Scholar
  11. 11.
    Nahmias, M.A., Tait, A.N., Tolias, L., Chang, M.P., de Lima, T.F., Shastri, B.J., Prucnal, P.R.: An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151106 (2016)CrossRefGoogle Scholar
  12. 12.
    Chen, J., He, Z.S., Lengyel, T., Szczerba, K., Westbergh, P., Gustavsson, J.S., Zirath, H., Larsson, A.: An energy efficient 56 Gbps PAM-4 VCSEL transmitter enabled by a 100 Gbps driver in 0.25 um InP DHBT technology. J. Lightwave Technol. 34, 4954–4964 (2016)CrossRefGoogle Scholar
  13. 13.
    Tokunari, M., Hsu, H.H., Nakagawa, S.: Assembly and demonstration of high bandwidth-density optical MCM. In: 2015 IEEE 65th Electronic Components and Technology Conference, pp. 799–803. IEEE (2015)Google Scholar
  14. 14.
    Tokunari, M., Hsu, H.H., Masuda, K., Nakagawa, S., Assembly optimization for low power optical MCM link. In: Proc. IEEE CPMT Symposium Japan (ICSJ), Kyoto, 5 November 2015 (2015)Google Scholar
  15. 15.
    Tokunari, M., Hsu, H.H., Toriyama, K., Noma, H., Nakagawa, S.: High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate. J. Lightwave Technol. 32, 1207–1212 (2014)CrossRefGoogle Scholar
  16. 16.
    Heroux, J.B., Kise, T., Funabashi, M., Aoki, T., Schow, C.L., Rylyakov, A.V., Nakagawa, S.: Energy-efficient 1060-nm optical link operating up to 28 Gb/s. J. Lightwave Technol. 33, 733–740 (2015)CrossRefGoogle Scholar
  17. 17.
    Ishigure, T., Shitanda, K., Kudo, T., Takayama, S., Mori, T., Moriya, K., Choki, K., Low-loss design and fabrication of multimode polymer optical waveguide circuit with crossings for high-density optical PCB. In: 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 297–304. IEEE (2013)Google Scholar
  18. 18.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)CrossRefGoogle Scholar
  19. 19.
    Tanaka, G., Nakane, R., Yamane, T., Nakano, D., Takeda, S., Nakagawa, S., Hirose, A.: Exploiting heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). doi: 10.1007/978-3-319-46687-3_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean Benoit Héroux
    • 1
  • Hidetoshi Numata
    • 1
  • Daiju Nakano
    • 1
  1. 1.IBM ResearchTokyo, KawasakiJapan

Personalised recommendations