Implementation of Desired Digital Spike Maps in the Digital Spiking Neurons

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10639)

Abstract

This paper considers implementation of desired digital spike maps (DSmaps) in the digital spiking neurons (DSNs). The DSmap is defined on a set of points and can describe various spike-trains. The DSN is constructed by two shift registers and a wiring. Depending on the wiring pattern, the DSN can generate various spike-trains. We present a simple formula that clarifies relation between the DSmaps and DSNs. Using the formula, desired DSmaps can be implemented in DSNs. We then present a simple ring-coupled system of the DSNs and demonstrate multi-phase synchronization of periodic spike-trains in Verilog simulation. This coupled system will be developed into large-scale networks of DSNs.

Keywords

Spike-trains Stability Digital spiking neurons Shift registers Multi-phase synchronization 

Notes

Acknowledgements

The authors wish to thank Mr. Tomoki Hamaguchi of Hosei University for his valuable comments on the Verilog simulation. This work is supported in part by JSPS KAKENHI\(\#\)15K00350.

References

  1. 1.
    Horimoto, N., Ogawa, T., Saito, T.: Basic analysis of digital spike maps. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7552, pp. 161–168. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33269-2_21 CrossRefGoogle Scholar
  2. 2.
    Horimoto, N., Saito, T.: Analysis of various transient phenomena and co-existing periodic spike-trains in simple digital spike maps. In: Proceedings of IJCNN, pp. 1751–1758 (2013)Google Scholar
  3. 3.
    Yamaoka, H., Saito, T.: Steady-versus-transient plot for analysis of digital maps. IEICE Trans. Fund. E99–A(10), 1806–1812 (2016)CrossRefGoogle Scholar
  4. 4.
    Hamaguchi, T., Yamaoka, K., Saito, T.: Stability analysis of periodic orbits in digital spiking neurons. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 334–341. Springer, Cham (2016). doi: 10.1007/978-3-319-46672-9_38 CrossRefGoogle Scholar
  5. 5.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  6. 6.
    Chua, L.O.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, I, II. World Scientific, Singapore (2005)MATHGoogle Scholar
  7. 7.
    Campbell, S.R., Wang, D., Jayaprakash, C.: Synchrony and desynchrony in integrate-and-fire oscillators. Neural Comput. 11, 1595–1619 (1999)CrossRefGoogle Scholar
  8. 8.
    Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Volkovskii, A.R.: Digital communication using chaotic-pulse-position modulation. IEEE Trans. CAS-I 48(12), 1436–1444 (2001)CrossRefGoogle Scholar
  9. 9.
    Iguchi, T., Hirata, A., Torikai, H.: Theoretical and heuristic synthesis of digital spiking neurons for spike-pattern-division multiplexing. IEICE Trans. Fund. E93–A(8), 1486–1496 (2010)CrossRefGoogle Scholar
  10. 10.
    Torikai, H., Funew, A., Saito, T.: Digital spiking neuron and its learning for approximation of various spike-trains. Neural Networks 21, 140–149 (2008)CrossRefMATHGoogle Scholar
  11. 11.
    Yamaoka, K., Saito, T.: Realization of desired super-stable spike-trains based on digital spiking neurons. In: Proceedings of IJCNN, pp. 198–205 (2016)Google Scholar
  12. 12.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2006)Google Scholar
  13. 13.
    Lee, G., Farhat, N.H.G.: The bifurcating neuron network 1. Neural Networks 14, 115–131 (2001)CrossRefGoogle Scholar
  14. 14.
    Torikai, H., Saito, T., Schwarz, W.: Synchronization via multiplex pulse-train. IEEE Trans. Circuits Syst. I 46(9), 1072–1085 (1999)CrossRefGoogle Scholar
  15. 15.
    Saravanan, S., Lavanya, M., Vijay Sai, R., Kumar, R.: Design and analysis of linear feedback shift register based on various tap connection. Procedia Eng. 38, 640–646 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Hosei UniversityKoganei, TokyoJapan

Personalised recommendations