Experimental Study on the Effects of Watermarking Techniques on EEG-Based Application System Performance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10639)


Watermarking has been suggested as a means to improve security of e-Health systems or to add additional functionalities to such system. All watermarking methods alter the host signal to some extent, though the acceptability of this modification varies with the watermarking scheme and depends on a particular application. However, the effect of watermarking methods on Electroencephalogram (EEG)-based applications has not been investigated. In this paper, we propose a robust EEG watermarking scheme and experimentally investigate the impact of applying the proposed method on the recognition performance of some EEG-based application systems such as emotion recognition and user authentication. We have found that the proposed EEG watermarking scheme results in a small degradation of performance.


EEG User authentication Watermarking Discrete Wavelet Transform (DWT) SVD (Sigular Value Decomposition) Quantization Index Module (QIM) 


  1. 1.
    Abdulkader, S.N., Atia, A., Mostafa, M.S.M.: Brain computer interfacing: applications and challenges. Egypt. Inf. J. 16(2), 213–230 (2015)CrossRefGoogle Scholar
  2. 2.
    Ali, M., Mosa, A.H., Al Machot, F., Kyamakya, K.: EEG-based emotion recognition approach for e-healthcare applications. In: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 946–950. IEEE (2016)Google Scholar
  3. 3.
    Bhatnagar, G., Wu, Q.J.: Biometrics inspired watermarking based on a fractional dual tree complex wavelet transform. Future Gener. Comput. Syst. 29(1), 182–195 (2013)CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Tsai, P., Lin, C.C.: SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10), 1577–1586 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, B., Wornell, G.W.: Quantization index modulation methods for digital watermarking and information embedding of multimedia. J. VLSI Signal Process. Syst. 27(1–2), 7–33 (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Coan, J.A., Allen, J.J.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67(1), 7–50 (2004)CrossRefGoogle Scholar
  7. 7.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18(1), 32–80 (2001)CrossRefGoogle Scholar
  8. 8.
    Cox, I., Miller, M.: A review of watermarking and the importance of perceptual watermarking. In: Proceedings of Electronic Imaging (1997)Google Scholar
  9. 9.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, San Francisco (2007)Google Scholar
  10. 10.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  11. 11.
    Dong, J., Tan, T.: Effects of watermarking on iris recognition performance. In: 2008 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, pp. 1156–1161. IEEE (2008)Google Scholar
  12. 12.
    Hämmerle-Uhl, J., Raab, K., Uhl, A.: Experimental study on the impact of robust watermarking on iris recognition accuracy. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1479–1484. ACM (2010)Google Scholar
  13. 13.
    Hong, S., Kim, H., Lee, S., Chung, Y.: Analyzing the secure and energy efficient transmissions of compressed fingerprint images using encryption and watermarking. In: 2008 International Conference on Information Security and Assurance, ISA 2008, pp. 316–320. IEEE (2008)Google Scholar
  14. 14.
    Koelstra, S., Muhl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  15. 15.
    Lang, A., Dittmann, J.: Digital watermarking of biometric speech references: impact to the EER system performance. In: Security, Steganography, and Watermarking of Multimedia Contents 9 (2007)Google Scholar
  16. 16.
    Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008-Graz Data set B. Graz University of Technology, Austria (2008)Google Scholar
  17. 17.
    Lei, B., Soon, Y., Zhou, F., Li, Z., Lei, H.: A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Sig. Process. 92(9), 1985–2001 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, X., Hu, B., Zhu, T., Yan, J., Zheng, F.: Towards affective learning with an EEG feedback approach. In: Proceedings of the First ACM International Workshop on Multimedia Technologies for Distance Learning, pp. 33–38. ACM (2009)Google Scholar
  19. 19.
    Liu, R., Tan, T.: An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimedia 4(1), 121–128 (2002)CrossRefGoogle Scholar
  20. 20.
    Lock, A., Allen, A.: Effects of reversible watermarking on iris recognition performance. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(4), 574–579 (2014)Google Scholar
  21. 21.
    Marcel, S., Millán, J.d.R.: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29(4) (2007)Google Scholar
  22. 22.
    Mishra, A., Agarwal, C., Sharma, A., Bedi, P.: Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm. Expert Syst. Appl. 41(17), 7858–7867 (2014)CrossRefGoogle Scholar
  23. 23.
    Moon, D., Kim, T., Jung, S.H., Chung, Y., Moon, K., Ahn, D., Kim, S.-K.: Performance evaluation of watermarking techniques for secure multimodal biometric systems. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS, vol. 3802, pp. 635–642. Springer, Heidelberg (2005). doi: 10.1007/11596981_94 CrossRefGoogle Scholar
  24. 24.
    Mousavi, S.M., Naghsh, A., Abu-Bakar, S.: Watermarking techniques used in medical images: a survey. J. Digit. Imaging 27(6), 714–729 (2014)CrossRefGoogle Scholar
  25. 25.
    Oermann, A., Lang, A., Vielhauer, C.: Digital speech watermarking and its impact to biometric speech authentication. In: New Advances in Multimedia Security, Biometrics, Watermarking and Cultural Aspects (2006)Google Scholar
  26. 26.
    Orhan, U., Hekim, M., Ozer, M.: Eeg signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011)CrossRefGoogle Scholar
  27. 27.
    Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans. Inf Technol. Biomed. 15(5), 737–746 (2011)CrossRefGoogle Scholar
  28. 28.
    Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: EEG-based user authentication in multilevel security systems. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS, vol. 8347, pp. 513–523. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-53917-6_46 CrossRefGoogle Scholar
  29. 29.
    Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: A study on the feasibility of using EEG signals for authentication purpose. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 562–569. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42042-9_70 CrossRefGoogle Scholar
  30. 30.
    Pham, T.D., Tran, D., Ma, W., Tran, N.T.: Enhancing performance of EEG-based emotion recognition systems using feature smoothing. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 95–102. Springer, Cham (2015). doi: 10.1007/978-3-319-26561-2_12 CrossRefGoogle Scholar
  31. 31.
    Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)CrossRefGoogle Scholar
  32. 32.
    Tsai, H.H., Jhuang, Y.J., Lai, Y.S.: An SVD-based image watermarking in wavelet domain using SVR and PSO. Appl. Soft Comput. 12(8), 2442–2453 (2012)CrossRefGoogle Scholar
  33. 33.
    Vielhauer, C., Scheidat, T., Lang, A., Schott, M., Dittmann, J., Basu, T., Dutta, P.: Multimodal speaker authentication-evaluation of recognition performance of watermarked references. In: Proceedings of the 2nd Workshop on Multimodal User Authentication (MMUA), Toulouse, France (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of CanberraBruceAustralia

Personalised recommendations