Babesia in Domestic Ruminants

  • Sabrina Ganzinelli
  • Anabel Rodriguez
  • Leonhard Schnittger
  • Mónica Florin-Christensen
Chapter

Abstract

Babesia spp. are intraerythrocytic tick-transmitted apicomplexan protozoans, considered to be the second most commonly found parasites in the blood of mammals after trypanosomes. Ever since the discovery of parasitic inclusions in erythrocytes of cattle by Victor Babes, a great number of Babesia species have been described, and thanks to the advances in microscopy, cell biology, and molecular biology techniques, our knowledge is continually expanding. Most Babesia species that affect domestic ruminants, including cattle, water buffalo, and small ruminants, are distributed in tropical and subtropical regions of the world. Acute Babesia infections of these animals are associated with fever, anemia, hemoglobinuria, and abortions and, in some cases, neurological symptoms, respiratory distress, and even death. Babesiosis outbreaks can be prevented by a combination of vaccination with living attenuated organisms and tick control programs. However, these control methods have numerous limitations, and, additionally, commercial live vaccines are only available for bovine babesiosis caused by B. bovis and B. bigemina. Our knowledge on relevant parasite molecules that act in the interface with the mammalian and tick hosts is rapidly increasing in the postgenomic era and will aid in the development of new and improvement of known immunotherapeutic interventions.

Keywords

Babesiosis Ticks Piroplasmids Tick-borne pathogens Domestic ruminants Cattle Sheep Goat Buffalo 

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, Mc Court RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52:399–451.PubMedGoogle Scholar
  2. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick RS, Schoch CL, Smirnov A, Spiegel FW. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.PubMedPubMedCentralGoogle Scholar
  3. Aktaş M, Altay K, Dumanli N. Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Vet Parasitol. 2005;133(4):277–81.PubMedGoogle Scholar
  4. Aktas M, Altay K, Ozubek S, Dumanli N. A survey of ixodid ticks feeding on cattle and prevalence of tick-borne pathogens in the Black Sea region of Turkey. Vet Parasitol. 2012;187(3–4):567–71.PubMedGoogle Scholar
  5. Alvarez J, Lopez U, Rojas C, Borgonio VM, Sanchez V, Castañeda R, Vargas P, Figueroa JV. Immunization of Bos taurus steers with Babesia bovis recombinant antigens MSA-1, MSA-2c and 12D3. Transbound Emerg Dis. 2010;57(1–2):87–90.Google Scholar
  6. Alzan HF, Lau AO, Knowles DP, Herndon DR, Ueti MW, Scoles GA, Kappmeyer LS, Suarez CE. Expression of 6-Cys gene superfamily defines Babesia bovis sexual stage development within Rhipicephalus microplus. PLoS One. 2016;11(9):e0163791.PubMedPubMedCentralGoogle Scholar
  7. Asada M, Goto Y, Yahata K, Yokoyama N, Kawai S, Inoue N, Kaneko O, Kawazu S. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy. PLoS One. 2012;7(4):e35227.PubMedPubMedCentralGoogle Scholar
  8. Babes V. Sur l’hemoglobinurie bacterienne du boeuf. Comptesren dus hebdomadaires des seances de l’Academie des Sciences Paris. 1888;107:692–4.Google Scholar
  9. Babes V. L’etiologie d’une enzootie des moutons, denommee Carceag en Roumanie. (the etiology of an enzootic disease of sheep, called Carceag, in Romania) (in French). CR Hebd Acad Sci. 1892;115:359–61.Google Scholar
  10. Baravalle ME, Thompson C, Valentini B, Ferreira M, Torioni de Echaide S, Christensen MF, Echaide I. Babesia bovis biological clones and the inter-strain allelic diversity of the Bv80 gene support subpopulation selection as a mechanism involved in the attenuation of two virulent isolates. Vet Parasitol. 2012;190(3–4):391–400.PubMedGoogle Scholar
  11. Bastos RG, Suarez CE, Laughery JM, Johnson WC, Ueti MW, Knowles DP. Differential expression of three members of the multidomain adhesion CCp family in Babesia bigemina, Babesia bovis and Theileria equi. PLoS One. 2013;8(7):e67765.PubMedPubMedCentralGoogle Scholar
  12. Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiology. 2011;13:797–805.Google Scholar
  13. Blackman MJ, Bannister LH. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol Biochem Parasitol. 2001;117(1):11–25.PubMedGoogle Scholar
  14. Blouin EF, van Rensburg L. An ultrastructural study of the development of Babesia occultans in the salivary glands of adult Hyalomma marginatum rufipes. Onderstepoort J Vet Res. 1988;55(2):93–100.PubMedGoogle Scholar
  15. Bock RE, de Vos AJ. Immunity following use of Australian tick fever vaccine: a review of the evidence. Aust Vet J. 2001;79(12):832–9.PubMedGoogle Scholar
  16. Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(S):247–69.Google Scholar
  17. Bono MF, Mangold AJ, Baravalle ME, Valentini BS, Thompson CS, Wilkowsky SE, Echaide IE, Farber MD, Torioni de Echaide SM. Efficiency of a recombinant MSA-2c-based ELISA to establish the persistence of antibodies in cattle vaccinated with Babesia bovis. Vet Parasitol. 2008;157(3–4):203–10.PubMedGoogle Scholar
  18. Boonchit S, Xuan X, Yokoyama N, Goff WL, Waghela SD, Wagner G, Igarashi I. Improved enzyme-linked immunosorbent assay using C-terminal truncated recombinant antigens of Babesia bovis rhoptry-associated protein-1 for detection of specific antibodies. J Clin Microbiol. 2004;42(4):1601–4.PubMedPubMedCentralGoogle Scholar
  19. Boonchit S, Alhassan A, Chan B, Xuan X, Yokoyama N, Ooshiro M, Goff WL, Waghela SD, Wagner G, Igarashi I. Expression of C-terminal truncated and full-length Babesia bigemina rhoptry-associated protein 1 and their potential use in enzyme-linked immunosorbent assay. Vet Parasitol. 2006;137(1–2):28–35.PubMedGoogle Scholar
  20. Brayton KA, Lau AO, Herndon DR, Hannick L, Kappmeyer LS, Berens SJ, Bidwell SL, Brown WC, Crabtree J, Fadrosh D, Feldblum T, Forberger HA, Haas BJ, Howell JM, Khouri H, Koo H, Mann DJ, Norimine J, Paulsen IT, Radune D, Ren Q, Smith RK Jr, Suarez CE, White O, Wortman JR, Knowles DP Jr, McElwain TF, Nene VM. Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa. PLoS Pathog. 2007;3(10):1401–13.PubMedGoogle Scholar
  21. Brown WC, Suarez CE, Shoda LK, Estes DM. Modulation of host immune responses by protozoal DNA. Vet Immunol Immunopathol. 1999;72(1–2):87–94.PubMedGoogle Scholar
  22. Brown WC, Norimine J, Knowles DP, Goff WL. Immune control of Babesia bovis infection. Vet Parasitol. 2006;138:75–87.PubMedGoogle Scholar
  23. Buling A, Criado-Fornelio A, Asenzo G, Benitez D, Barba-Carretero JC, Florin-Christensen M. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet Parasitol. 2007;147(1–2):16–25.PubMedGoogle Scholar
  24. Caballero MC, Pedroni MJ, Palmer GH, Suarez CE, Davitt C, Lau AO. Characterization of acyl carrier protein and LytB in Babesia bovis apicoplast. Mol Biochem Parasitol. 2012;181(2):125–33.PubMedPubMedCentralGoogle Scholar
  25. Cantu A, Ortega-S JA, Mosqueda J, Garcia-Vazquez Z, Henke SE, George JE. Immunologic and molecular identification of Babesia bovis and Babesia bigemina in free-ranging white-tailed deer in northern Mexico. J Wildl Dis. 2007;43(3):504–7.PubMedGoogle Scholar
  26. Carletti T, Barreto C, Mesplet M, Mira A, Weir W, Shiels B, Oliva AG, Schnittger L, Florin-Christensen M. Characterization of a papain-like cysteine protease essential for the survival of Babesia ovis merozoites. Ticks Tick Borne Dis. 2016;7(1):85–93.PubMedGoogle Scholar
  27. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37.PubMedPubMedCentralGoogle Scholar
  28. Chung CJ, Suarez CE, Bandaranayaka-Mudiyanselage CL, Bandaranayaka-Mudiyanselage CB, Rzepka J, Heiniger TJ, Chung G, Lee SS, Adams E, Yun G, Waldron SJ. A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute and long-term infections with diverse Babesia bovis strains. Parasit Vectors. 2017;10(1):77.PubMedPubMedCentralGoogle Scholar
  29. Combrink MP, Troskie PC, Pienaar R, Latif AA, Mans BJ. Genotypic diversity in Babesia bovis field isolates and vaccine strains from South Africa. Vet Parasitol. 2014;199(3–4):144–52.PubMedGoogle Scholar
  30. Criado-Fornelio A, Gónzalez-del-Río MA, Buling-Saraña A, Barba-Carretero JC. The “expanding universe” of piroplasms. Vet Parasitol. 2004;119(4):337–45.PubMedGoogle Scholar
  31. Criado-Fornelio A, Buling A, Asenzo G, Benitez D, Florin-Christensen M, Gonzalez-Oliva A, Henriques G, Silva M, Alongi A, Agnone A, Torina A, Madruga CR. Development of fluorogenic probe-based PCR assays for the detection and quantification of bovine piroplasmids. Vet Parasitol. 2009;162(3–4):200–6.PubMedGoogle Scholar
  32. Cursino-Santos JR, Halverson G, Rodriguez M, Narla M, Lobo CA. Identification of binding domains on red blood cell glycophorins for Babesia divergens. Transfusion. 2014;54(4):982–9.PubMedGoogle Scholar
  33. da Silveira JA, Rabelo EM, Ribeiro MF. Detection of Theileria and Babesia in brown brocket deer (Mazamagoua zoubira) and marsh deer (Blastocerus Dichotomus) in the state of Minas Gerais, Brazil. Vet Parasitol. 2011;177(1–2):61–6.PubMedGoogle Scholar
  34. de la Fuente J. Vaccines for vector control: exciting possibilities for the future. Vet Journal. 2012;194:139–40.Google Scholar
  35. de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1–2):88–96.PubMedGoogle Scholar
  36. Decaro N, Larocca V, Parisi A, Losurdo M, Lia RP, Greco MF, Miccolis A, Ventrella G, Otranto D, Buonavoglia C. Clinical bovine piroplasmosis caused by Babesia occultans in Italy. J Clin Microbiol. 2013;51(7):2432–4.PubMedPubMedCentralGoogle Scholar
  37. Delbecq S, Auguin D, Yang YS, Löhr F, Arold S, Schetters T, Précigout E, Gorenflot A, Roumestand C. The solution structure of the adhesion protein Bd37 from Babesia divergens reveals structural homology with eukaryotic proteins involved in membrane trafficking. J Mol Biol. 2008;375(2):409–24.PubMedGoogle Scholar
  38. Dominguez M, Echaide I, Echaide ST, Mosqueda J, Cetrá B, Suarez CE, Florin-Christensen M. In silico predicted conserved B-cell epitopes in the merozoite surface antigen-2 family of B. bovis are neutralization sensitive. Vet Parasitol. 2010;167(2–4):216–26.PubMedGoogle Scholar
  39. Dominguez M, Echaide I, de Echaide ST, Wilkowsky S, Zabal O, Mosqueda JJ, Schnittger L, Florin-Christensen M. Validation and field evaluation of a competitive enzyme-linked immunosorbent assay for diagnosis of Babesia bovis infections in Argentina. Clin Vaccine Immunol. 2012;19(6):924–8.PubMedPubMedCentralGoogle Scholar
  40. Dowling SC, Perryman LE, Jasmer DP. A Babesia bovis 225-kilodalton spherical-body protein: localization to the cytoplasmic face of infected erythrocytes after merozoite invasion. Infect Immun. 1996;64(7):2618–26.PubMedPubMedCentralGoogle Scholar
  41. Duzgun A, Wright IG, Waltisbuhl DJ, Gale KR, Goodger BV, Dargie JD, Alabay M, Cerci H. An ELISA for the diagnosis of Babesia ovis infection utilizing a synthetic, Babesia bovis-derived antigen. Vet Parasitol. 1991;39(3–4):225–31.PubMedGoogle Scholar
  42. Erster O, Roth A, Wollkomirsky R, Leibovich B, Savitzky I, Zamir S, Molad T, Shkap V. Quantitative analysis of Babesia ovis infection in sheep and ticks. Vet Parasitol. 2016;221:39–45.PubMedGoogle Scholar
  43. Estrada-Peña A, Venzal JM, Nava S, Mangold A, Guglielmone AA, Labruna MB, de la Fuente J. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. J Med Entomol. 2012;49(4):794–802.PubMedGoogle Scholar
  44. Ferreri L, Benitez D, Dominguez M, Rodriguez A, Asenzo G, Mesplet M, Florin-Christensen M, Schnittger L. Water buffalos as carriers of Babesia bovis in Argentina. Ann N Y Acad Sci. 2008;1149:149–51.PubMedGoogle Scholar
  45. Figueroa JV, Chieves LP, Johnson GS, Buening GM. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet Parasitol. 1993;50(1–2):69–81.PubMedGoogle Scholar
  46. Flores DA, Minichiello Y, Araujo FR, Shkap V, Benítez D, Echaide I, Rolls P, Mosqueda J, Pacheco GM, Petterson M, Florin-Christensen M, Schnittger L. Evidence for extensive genetic diversity and substructuring of the Babesia bovis metapopulation. Transbound Emerg Dis. 2013;60(Suppl 2):131–6.PubMedGoogle Scholar
  47. Florin-Christensen M, Schnittger L. Piroplasmids and ticks: a long-lasting intimate relationship. Front Biosci. 2009;14:3064–73.Google Scholar
  48. Florin-Christensen M, Suarez CE, Hines SA, Palmer GH, Brown WC, McElwain TF. The Babesia bovis merozoite surface antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically distinct proteins. Infect Immun. 2002;70(7):3566–75.PubMedPubMedCentralGoogle Scholar
  49. Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141:1563–92.Google Scholar
  50. Gabrielli S, Galuppi R, Marcer F, Marini C, Tampieri MP, Moretti A, Pietrobelli M, Cancrini G. Development of culture-based serological assays to diagnose Babesia divergens infections. Vector Borne Zoonotic Dis. 2012;12(2):106–10.PubMedGoogle Scholar
  51. Gaffar FR, Franssen FF, de Vries E. Babesia bovis merozoites invade human, ovine, equine, porcine and caprine erythrocytes by a sialic acid-dependent mechanism followed by developmental arrest after a single round of cell fission. Int J Parasitol. 2003;33(14):1595–603.PubMedGoogle Scholar
  52. Gaffar FR, Yatsuda AP, Franssen FF, de Vries E. Erythrocyte invasion by Babesia bovis merozoites is inhibited by polyclonal antisera directed against peptides derived from a homologue of Plasmodium falciparum apical membrane antigen 1. Infect Immun. 2004a;72:2947–295.PubMedPubMedCentralGoogle Scholar
  53. Gaffar FR, Yatsuda AP, Franssen FF, de Vries E. A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Mol Biochem Parasitol. 2004b;136:25–34.PubMedGoogle Scholar
  54. Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, Schnittger L, Florin-Christensen M, Rodrigues MM, Soares IS. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a(1), MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577.PubMedPubMedCentralGoogle Scholar
  55. Goff WL, Bastos RG, Brown WC, Johnson WC, Schneider DA. The bovine spleen: interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections. Vet Immunol Immunopathol. 2010;138(1–2):1–14.PubMedGoogle Scholar
  56. Gohil S, Kats LM, Sturm A, Cooke BM. Recent insights into alteration of red blood cells by Babesia bovis: moovin’ forward. Trends Parasitol. 2010;26(12):591–9.PubMedGoogle Scholar
  57. Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol. 2013;43(2):125–32.PubMedGoogle Scholar
  58. Guan G, Chauvin A, Luo J, Inoue N, Moreau E, Liu Z, Gao J, Thekisoe OM, Ma M, Liu A, Dang Z, Liu J, Ren Q, Jin Y, Sugimoto C, Yin H. The development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detection of Babesia spp. infective to sheep and goats in China. Exp Parasitol. 2008;120(1):39–44.PubMedGoogle Scholar
  59. Gubbels MJ, Duraisingh MT. Evolution of apicomplexan secretory organelles. Int J Parasitol. 2012;42(12):1071–81.PubMedPubMedCentralGoogle Scholar
  60. Gubbels JM, de Vos AP, van der Weide M, Viseras J, Schouls LM, de Vries E, Jongejan F. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol. 1999;37(6):1782–9.PubMedPubMedCentralGoogle Scholar
  61. Guillemi E, Ruybal P, Lia V, González S, Farber M, Wilkowsky SE. Multi-locus typing scheme for Babesia bovis and Babesia bigemina reveals high levels of genetic variability in strains from northern Argentina. Infect Genet Evol. 2013;14:214–22.PubMedGoogle Scholar
  62. Guswanto A, Allamanda P, Mariamah ES, Munkjargal T, Tuvshintulga B, Takemae H, Sivakumar T, AbouLaila M, Terkawi MA, Ichikawa-Seki M, Nishikawa Y, Yokoyama N, Igarashi I. Evaluation of immunochromatographic test (ICT) strips for the serological detection of Babesia bovis and Babesia bigemina infection in cattle from western java, Indonesia. Vet Parasitol. 2017;239:76–9.PubMedGoogle Scholar
  63. Habela M, Reina D, Nieto C, Navarrete IK. Antibody response and duration of latent infection in sheep following experimental infection with Babesia ovis. Vet Parasitol. 1990;35:1–10.PubMedGoogle Scholar
  64. Hadj-Kaddour K, Carcy B, Vallet A, Randazzo S, Delbecq S, Kleuskens J, Schetters T, Gorenflot A, Precigout E. Recombinant protein Bd37 protected gerbils against heterologous challenges with isolates of Babesia divergens polymorphic for the bd37 gene. Parasitology. 2007;134(Pt 2):187–96.PubMedGoogle Scholar
  65. Haghi MM, Etemadifar F, Fakhar M, Teshnizi SH, Soosaraei M, Shokri A, Hajihasani A, Mashhadi H. Status of babesiosis among domestic herbivores in Iran: a systematic review and meta-analysis. Parasitol Res. 2017;116(4):1101–9.PubMedGoogle Scholar
  66. He L, Zhou YQ, Oosthuizen MC, Zhao JL. Loop-mediated isothermal amplification (LAMP) detection of Babesia orientalis in water buffalo (Bubalus babalis, Linnaeus, 1758) in China. Vet Parasitol. 2009;165(1–2):36–40.PubMedGoogle Scholar
  67. He L, Feng HH, Zhang QL, Zhang WJ, Khan MK, Hu M, Zhou YQ, Zhao JL. Development and evaluation of real-time PCR assay for the detection of Babesia orientalis in water buffalo (Bubalus Bubalis, Linnaeus, 1758). J Parasitol. 2011;97(6):1166–9.PubMedGoogle Scholar
  68. He L, Feng HH, Zhang WJ, Zhang QL, Fang R, Wang LX, Tu P, Zhou YQ, Zhao JL, Oosthuizen MC. Occurrence of Theileria and Babesia species in water buffalo (Bubalus babalis, Linnaeus, 1758) in the Hubei province, South China. Vet Parasitol. 2012;186(3–4):490–6.PubMedGoogle Scholar
  69. He L, Zhang Y, Zhang QL, Zhang WJ, Feng HH, Khan MK, Hu M, Zhou YQ, Zhao JL. Mitochondrial genome of Babesia orientalis, apicomplexan parasite of water buffalo (Bubalus Bubalis, Linnaeus, 1758) endemic in China. Parasit Vectors. 2014;7:82.PubMedPubMedCentralGoogle Scholar
  70. Holman PJ, Carroll JE, Pugh R, Davis DS. Molecular detection of Babesia bovis and Babesia bigemina in white-tailed deer (Odocoileus virginianus) from tom Green County in central Texas. Vet Parasitol. 2011;177(3–4):298–304.PubMedGoogle Scholar
  71. Homer MJ, Aguilar-Delfin I, Telford SR III, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13:451–69.PubMedPubMedCentralGoogle Scholar
  72. Hornok S, Takács N, Kontschán J, György Z, Micsutka A, Iceton S, Flaisz B, Farkas R, Hofmann-Lehmann R. Diversity of Haemaphysalis-associated piroplasms of ruminants in Central-Eastern Europe, Hungary. Parasit Vectors. 2015;8:627.PubMedPubMedCentralGoogle Scholar
  73. Horta S, Barreto MC, Pepe A, Campos J, Oliva A. Highly sensitive method for diagnosis of subclinical Babesia ovis infection. Ticks Tick Borne Dis. 2014;5(6):902–6.PubMedGoogle Scholar
  74. Huang Y, He L, Hu J, He P, He J, Yu L, Malobi N, Zhou Y, Shen B, Zhao J. Characterization and annotation of Babesia orientalis apicoplast genome. Parasit Vec. 2015;8:543.Google Scholar
  75. Hurtado A. Reverse line blot hybridization with species-specific oligonucleotide probes: application to piroplasm detection. Methods Mol Biol. 2015;1247:183–92.PubMedGoogle Scholar
  76. Hurtado A, Barandika JF, Oporto B, Minguijón E, Povedano I, García-Pérez AL. Risks of suffering tick-borne diseases in sheep translocated to a tick infested area: a laboratory approach for the investigation of an outbreak. Ticks Tick Borne Dis. 2015;6(1):31–7.PubMedGoogle Scholar
  77. Hutchings CL, Li A, Fernandez KM, Fletcher T, Jackson LA, Molloy JB, Jorgensen WK, Lim CT, Cooke BM. New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis. Mol Microbiol. 2007;65(4):1092–110.PubMedGoogle Scholar
  78. Jaramillo Ortiz JM, Molinari MP, Gravisaco MJ, Paoletta MS, Montenegro VN, Wilkowsky SE. Evaluation of different heterologous prime-boost immunization strategies against Babesia bovis using viral vectored and protein-adjuvant vaccines based on a chimeric multi-antigen. Vaccine. 2016;34(33):3913–9.PubMedGoogle Scholar
  79. Kakoma I, Mehlhorn H. Babesia of domestic ruminants. In: Kreier JP, Baker JR, editors. Parasitic protozoa. 2nd ed. New York: Academic; 1994. p. 141–216.Google Scholar
  80. Kim CM, Blanco LB, Alhassan A, Iseki H, Yokoyama N, Xuan X, Igarashi I. Development of a rapid immunochromatographic test for simultaneous serodiagnosis of bovine babesioses caused by Babesia bovis and Babesia bigemina. Am J Trop Med Hyg. 2008;78(1):117–21.PubMedGoogle Scholar
  81. Klinger CM, Nisbet RE, Ouologuem DT, Roos DS, Dacks JB. Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology. Curr Opin Microbiol. 2013;16(4):424–31.PubMedPubMedCentralGoogle Scholar
  82. Koch R. Beitrage zur Entwicklungsgeschichte der Piroplasmen. Z Hyg Infekt-Kr. 1906;54:1–9.Google Scholar
  83. Lau AO, Kalyanaraman A, Echaide I, Palmer GH, Bock R, Pedroni MJ, Rameshkumar M, Ferreira MB, Fletcher TI, McElwain TF. Attenuation of virulence in an apicomplexan hemoparasite results in reduced genome diversity at the population level. BMC Genomics. 2011;12:410.PubMedPubMedCentralGoogle Scholar
  84. Lempereur L, Beck R, Fonseca I, Marques C, Duarte A, Santos M, Zúquete S, Gomes J, Walder G, Domingos A, Antunes S, Baneth G, Silaghi C, Holman P, Zintl A. Guidelines for the detection of Babesia and Theileria parasites. Vector Borne Zoonotic Dis. 2017;17(1):51–65.PubMedGoogle Scholar
  85. Lew AE, Dluzewski AR, Johnson AM, Pinder JC. Myosins of Babesia bovis: molecular characterisation, erythrocyte invasion, and phylogeny. Cell Motil Cytoskeleton. 2002;52:202–20.PubMedGoogle Scholar
  86. Li H, Child MA, Bogyo M. Proteases as regulators of pathogenesis: examples from the Apicomplexa. Biochim Biophys Acta. 2012;1824(1):177–85.PubMedGoogle Scholar
  87. Liu Q, Zhao JL, Zhou YQ, Liu EY, Yao BA, Fu Y. Study on some molecular characterization of Babesia orientalis. Vet Parasitol. 2005;130(3–4):191–8.PubMedGoogle Scholar
  88. Liu Q, Zhou YQ, Zhou DN, Liu EY, Du K, Chen SG, Yao BA, Zhao JL. Semi-nested PCR detection of Babesia orientalis in its natural hosts Rhipicephalus haemaphysaloides and buffalo. Vet Parasitol. 2007a;143(3–4):260.PubMedGoogle Scholar
  89. Liu AH, Yin H, Guan GQ, Schnittger L, Liu ZJ, Ma ML, Dang ZS, Liu JL, Ren QY, Bai Q, Ahmed JS, Luo JX. At least two genetically distinct large Babesia species infective to sheep and goats in China. Vet Parasitol. 2007b;147(3–4):246–51.PubMedGoogle Scholar
  90. Lobo CA. Babesia divergens and Plasmodium falciparum use common receptors glycophorins a and B, to invade the human red blood cell. Infect Immun. 2005;73(1):649–51.PubMedPubMedCentralGoogle Scholar
  91. Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion. Curr Opin Hematol. 2012;19(3):170–5.PubMedGoogle Scholar
  92. Maharana BR, Tewari AK, Saravanan BC, Sudhakar NR. Important hemoprotozoan diseases of livestock: challenges in current diagnostics and therapeutics: an update. Vet World. 2016;9(5):487–95.PubMedPubMedCentralGoogle Scholar
  93. Mahoney DF. The application of epizootiological principals in the control of babesiosis in cattle. Bull Off Int Epizoot. 1974;81:123–38.Google Scholar
  94. Mangold AJ, Vanzini VR, Echaide IE, de Eschaide ST, Volpogni MM, Guglielmone AA. Viability after thawing and dilution of simultaneously cryopreserved vaccinal Babesia bovis and Babesia bigemina strains cultured in vitro. Vet Parasitol. 1996;61:345–8.PubMedGoogle Scholar
  95. Martins TM, do Rosário VE, Domingos A. Expression and characterization of the Babesia bigemina cysteine protease BbiCPL1. Acta Trop. 2012;121(1):1–5.PubMedGoogle Scholar
  96. Mesplet M, Echaide I, Dominguez M, Mosqueda JJ, Suarez CE, Schnittger L, Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasit Vectors. 2010;3:113.PubMedPubMedCentralGoogle Scholar
  97. Mesplet M, Palmer GH, Pedroni MJ, Echaide I, Florin-Christensen M, Schnittger L, Lau AO. Genome-wide analysis of peptidase content and expression in a virulent and attenuated Babesia bovis strain pair. Mol Biochem Parasitol. 2011;179(2):111–3.PubMedPubMedCentralGoogle Scholar
  98. Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bødker R, Fach P, Moutailler S. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol. 2014;4:103.PubMedPubMedCentralGoogle Scholar
  99. Mihalca AD. The quest for piroplasms: from babes to smith to molecules. Sci Parasitol. 2010;11:14–9.Google Scholar
  100. Mosqueda J, McElwain TF, Palmer GH. Babesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes. Infect Immun. 2002;70(11):6448–55.PubMedPubMedCentralGoogle Scholar
  101. Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamu G, Canto GJ. Current advances in detection and treatment of babesiosis. Curr Med Chem. 2012;19(10):1504–18.PubMedPubMedCentralGoogle Scholar
  102. Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: multiple transcribed copies differing by 3′ end repeated sequences. Vet Parasitol. 2015;211(3–4):158–69.PubMedGoogle Scholar
  103. Niu Q, Liu Z, Yang J, Yu P, Pan Y, Zhai B, Luo J, Moreau E, Guan G, Yin H. Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan) (Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA. Parasit Vectors. 2016a;9(1):313.PubMedPubMedCentralGoogle Scholar
  104. Niu Q, Liu Z, Yang J, Yu P, Pan Y, Zhai B, Luo J, Yin H. Genetic diversity and molecular characterization of Babesia motasi-like in small ruminants and ixodid ticks from China. Infect Genet Evol. 2016b;41:8–15.PubMedGoogle Scholar
  105. Niu Q, Liu Z, Yang J, Gao S, Pan Y, Guan G, Luo J, Yin H. Genetic characterization and molecular survey of Babesia sp. Xinjiang infection in small ruminants and ixodid ticks in China. Infect Genet Evol. 2017;49:330–5.PubMedGoogle Scholar
  106. O’Connor RM, Allred DR. Selection of Babesia bovis infected erythrocytes for adhesion to endothelial cells co-selects for altered variant erythrocyte surface antigen isoforms. J Immunol. 2000;164:2037–45.PubMedGoogle Scholar
  107. OIE World Organization for Animal Health Terrestrial Manual. Bovine Babesiosis. Chapter 2.4.2; 2014. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.02_BOVINE_BABESIOSIS.pdf.Google Scholar
  108. Pedroni MJ, Sondgeroth KS, Gallego-Lopez GM, Echaide I, Lau AO. Comparative transcriptome analysis of geographically distinct virulent and attenuated Babesia bovis strains reveals similar gene expression changes through attenuation. BMC Genomics. 2013;14:763.PubMedPubMedCentralGoogle Scholar
  109. Pérez de León AA, Strickman DA, Knowles DP, Fish D, Thacker E, de la Fuente J, Krause PJ, Wikel SK, Miller RS, Wagner GG, Almazán C, Hillman R, Messenger MT, Ugstad PO, Duhaime RA, Teel PD, Ortega-Santos A, Hewitt DG, Bowers EJ, Bent SJ, Cochran MH, TF ME, Scoles GA, Suarez CE, Davey R, Howell Freeman JM, Lohmeyer K, Li AY, Guerrero FD, Kammlah DM, Phillips P, Pound JM, Group for Emerging Babesioses and One Health Research and Development in the U.S. One health approach to identify research needs in bovine and human babesioses: workshop report. Parasit Vectors. 2010;3(1):36.PubMedPubMedCentralGoogle Scholar
  110. Perez-Llaneza A, Caballero M, Baravalle E, Mesplet M, Mosqueda J, Suarez CE, Echaide I, Katzer F, Pacheco GM, Florin-Christensen M, Schnittger L. Development of a tandem repeat-based multilocus typing system distinguishing Babesia bovis geographic isolates. Vet Parasitol. 2010;167(2–4):196–204.PubMedGoogle Scholar
  111. Ramos CM, Cooper SM, Holman PJ. Molecular and serologic evidence for Babesia bovis-like parasites in white-tailed deer (Odocoileus virginianus) in south Texas. Vet Parasitol. 2010;172(3–4):214–20.PubMedGoogle Scholar
  112. Ramos CA, Araújo FR, Souza II, Bacanelli G, Luiz HL, Russi LS, Oliveira RH, Soares CO, Rosinha GM, Alves LC. Real-time polymerase chain reaction based on msa2c gene for detection of Babesia bovis. Vet Parasitol. 2011;176(1):79–83.PubMedGoogle Scholar
  113. Ranjbar-Bahadori S, Eckert B, Omidian Z, Shirazi NS, Shayan P. Babesia ovis as the main causative agent of sheep babesiosis in Iran. Parasitol Res. 2012;110(4):1531–6.PubMedGoogle Scholar
  114. Ribeiro MFB, Patarroyo JHS. Ultrastructure of Babesia bigemina gametes obtained in “in vitro” erythrocyte cultures. Vet Parasitol. 1998;76:19–25.PubMedGoogle Scholar
  115. Rodriguez AE, Couto A, Echaide I, Schnittger L, Florin-Christensen M. Babesia bovis contains an abundant parasite-specific protein-free glycerophosphatidylinositol and the genes predicted for its assembly. Vet Parasitol. 2010;167(2–4):227–35.PubMedGoogle Scholar
  116. Rodriguez AE, Schnittger L, Tomazic ML, Florin-Christensen M. Current and prospective tools for the control of cattle-infecting Babesia parasites. In: Castillo V, Harris R, editors. Protozoa: biology, classification and role in disease. Hauppauge, NY: Nova; 2013a. p. 1–44.Google Scholar
  117. Rodriguez AE, Zamorano P, Wilkowsky S, Torrá F, Ferreri L, Dominguez M, Florin-Christensen M. Delivery of recombinant vaccines against bovine herpes virus type 1 gD and Babesia bovis MSA-2c to mice using liposomes derived from egg yolk lipids. Vet J. 2013b;196(3):550–1.PubMedGoogle Scholar
  118. Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis. 2014;5(3):343–8.PubMedGoogle Scholar
  119. Romero-Salas D, Mira A, Mosqueda J, García-Vázquez Z, Hidalgo-Ruiz M, Vela NA, de León AA, Florin-Christensen M, Schnittger L. Molecular and serological detection of Babesia bovis- and Babesia bigemina-infection in bovines and water buffaloes raised jointly in an endemic field. Vet Parasitol. 2016;217:101–7.PubMedGoogle Scholar
  120. Ruef BJ, Dowling SC, Conley PG, Perryman LE, Brown WC, Jasmer DP, Rice-Ficht AC. A unique Babesia bovis spherical body protein is conserved among geographic isolates and localizes to the infected erythrocyte membrane. Mol Biochem Parasitol. 2000;105(1):1–12.PubMedGoogle Scholar
  121. Schnittger L, Yin H, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS. Phylogeny of sheep and goat Theileria and Babesia parasites. Parasitology Res. 2003;91:398–406.Google Scholar
  122. Schnittger L, Yin H, Qi B, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS. Simultaneous detection and differentiation of Theileria and Babesia parasites infecting small ruminants by reverse line blotting. Parasitol Res. 2004;92(3):189–96.PubMedPubMedCentralGoogle Scholar
  123. Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12(8):1788–809.PubMedPubMedCentralGoogle Scholar
  124. Schötta AM, Wijnveld M, Stockinger H, Stanek G. Reverse line blot-based detection approaches of microbial pathogens in Ixodes ricinus ticks collected in Austria and impact of the chosen method. Appl Environ Microbiol. 2017; pii: AEM.00489-17.Google Scholar
  125. Shoda LK, Palmer GH, Florin-Christensen J, Florin-Christensen M, Godson DL, Brown WC. Babesia bovis-stimulated macrophages express interleukin-1beta, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infect Immun. 2000;68:5139–45.PubMedPubMedCentralGoogle Scholar
  126. Simuunza M, Bilgic H, Karagenc T, Syakalima M, Shiels B, Tait A, Weir W. Population genetic analysis and sub-structuring in Babesia bovis. Mol Biochem Parasitol. 2011;177(2):106–15.PubMedGoogle Scholar
  127. Sivakumar T, Igarashi I, Yokoyama N. Babesia ovata: taxonomy, phylogeny and epidemiology. Vet Parasitol. 2016;229:99–106.PubMedGoogle Scholar
  128. Smith T, Kilborne FL. Investigations into the nature, causation and prevention of southern cattle fever. In: Ninth annual report of the Bureau of Animal Industry for the year 1892. Washington, DC: Government Printing Office; 1893. p. 177–304.Google Scholar
  129. Suarez CE, Palmer GH, Hötzel I, McElwain TF. Structure, sequence, and transcriptional analysis of the Babesia bovis rap-1 multigene locus. Mol Biochem Parasitol. 1998;93(2):215–24.PubMedGoogle Scholar
  130. Suarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of allelic variation in the Babesia bovis merozoite surface antigen 1 (MSA-1) locus and identification of a cross-reactive inhibition-sensitive MSA-1 epitope. Infect Immun. 2000;68(12):6865–70.PubMedPubMedCentralGoogle Scholar
  131. Suarez CE, Palmer GH, Florin-Christensen M, Hines SA, Hötzel I, McElwain TF, Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Mol Biochem Parasitol. 2003;127(2):101–12.Google Scholar
  132. Terkawi MA, Seuseu FJ, Eko-Wibowo P, Huyen NX, Minoda Y, Abou Laila M, Kawai S, Yokoyama N, Xuan X, Igarashi I. Secretion of a new spherical body protein of Babesia bovis into the cytoplasm of infected erythrocytes. Mol Biochem Parasitol. 2011;178(1–2):40–5.PubMedGoogle Scholar
  133. Ueti MW, Olafson PU, Freeman JM, Johnson WC, Scoles GA. A virulent Babesia bovis strain failed to infect white-tailed deer (Odocoileus virginianus). PLoS One. 2015;10(6):e0131018.PubMedPubMedCentralGoogle Scholar
  134. Uilenberg G. Babesia—a historical overview. Vet Parasitol. 2006;138:3–10.PubMedPubMedCentralGoogle Scholar
  135. Weber G, Friedhoff KT. Preliminary observations on the ultrastructure of supposed sexual stages of Babesia bigemina (Piroplasmea). Z Parasitenkund. 1977;53:83–92.Google Scholar
  136. Weerasooriya G, Sivakumar T, Lan DT, Long PT, Takemae H, Igarashi I, Inoue N, Yokoyama N. Epidemiology of bovine hemoprotozoa parasites in cattle and water buffalo in Vietnam. J Vet Med Sci. 2016;78(8):1361–7.PubMedPubMedCentralGoogle Scholar
  137. Wilkowsky SE, Farber M, Echaide I, Torioni de Echaide S, Zamorano PI, Dominguez M, Suarez CE, Florin-Christensen M. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol Biochem Parasitol. 2003;127(2):133–41.PubMedGoogle Scholar
  138. Willadsen P. Tick control: thoughts on a research agenda. Vet Parasitol. 2006;138:161–8.PubMedGoogle Scholar
  139. Yang Y, Li Q, Wang S, Chen X, Du A. Rapid and sensitive detection of Babesia bovis and Babesia bigemina by loop-mediated isothermal amplification combined with a lateral flow dipstick. Vet Parasitol. 2016;219:71–6.PubMedGoogle Scholar
  140. Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, Igarashi I. Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 andits erythrocyte-binding activity. Infect Immun. 2002;70(10):5822–6.PubMedPubMedCentralGoogle Scholar
  141. Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1–2):22–32.PubMedGoogle Scholar
  142. Zhou M, Cao S, Sevinc F, Sevinc M, Ceylan O, Ekici S, Jirapattharasate C, Moumouni PF, Liu M, Wang G, Iguchi A, Vudriko P, Suzuki H, Xuan X. Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey. Ticks Tick Borne Dis. 2017;8(2):246–52.PubMedGoogle Scholar
  143. Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16(4):622–36.PubMedPubMedCentralGoogle Scholar
  144. Zintl A, Gray JS, Skerrett HE, Mulcahy G. Possible mechanisms underlying age-related resistance to bovine babesiosis. Parasite Immunol. 2005;27:115–20.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabrina Ganzinelli
    • 1
    • 2
  • Anabel Rodriguez
    • 1
  • Leonhard Schnittger
    • 1
    • 2
  • Mónica Florin-Christensen
    • 1
    • 2
  1. 1.Institute of Pathobiology, Center for Research on Veterinary and Agronomic Sciences (CICVyA)National Institute of Agricultural Technology (INTA-Argentina)HurlinghamArgentina
  2. 2.National Council of Scientific and Technological Research (CONICET)Buenos AiresArgentina

Personalised recommendations