Theileria in Ruminants

  • Henry Kiara
  • Lucilla Steinaa
  • Vishvanath Nene
  • Nicholas Svitek
Chapter

Abstract

Theileria are important hemoprotozoan parasites of domestic and wild ruminants, transmitted by ixodid ticks leading to diseases which range from mild in apparent reactions to highly fatal diseases. Bovine-infecting T. parva and T. annulata and ovine-infecting T. lestoquardi are of major global economic importance, but other Theileria spp. are also briefly mentioned. Classification of Theileria has been a subject of great controversy without consensus on whether many taxons are different species, synonyms, or subspecies of the same parasite. However, with the development of new molecular tools, many of the outstanding difficulties could be resolved. Theileria have complex life cycles both in the vertebrate host and the tick vector, many of which are not clearly understood. One unique feature of some Theileria is their ability to transform infected host cells into a reversible cancer-like proliferation conferring to them an ability to proliferate without apoptosis. The transformation is not permanent because it can be reversed by treatment with anti-theilerial drugs. Understanding this mechanism could give insights into treatment of cancer. Control of the diseases caused by Theileria has largely relied on chemical drugs either to treat infected hosts or prevent infection by controlling the tick vectors. But resistance to chemicals by the parasites or vectors has led to the development of more sustainable control methods such as live vaccination against the three most pathogenic Theileria spp. of ruminants. Efforts are also under way to develop subunit vaccines against these parasites.

Keywords

Theileria parva Theileria annulata Theileria lestoquardi Ruminants Epidemiology Morphology Host-pathogen interactions East Coast fever Tropical theileriosis 

References

  1. Abdo J, Kristersson T, Seitzer U, Renneker S, Merza M, Ahmed J. Development and laboratory evaluation of a lateral flow device (LFD) for the serodiagnosis of Theileria annulata infection. Parasitol Res. 2010;107(5):1241–8.  https://doi.org/10.1007/s00436-010-1994-8. Epub 2010 Aug 3.PubMedCrossRefGoogle Scholar
  2. Ahmed BM, Taha KM, Enan KA, Elfahal AM, El Hussein AR. Attenuation of Theileria lestoquardi infected cells and immunization of sheep against malignant ovine theileriosis. Vaccine. 2013;31(42):4775–81.  https://doi.org/10.1016/j.vaccine.2013.08.004.PubMedCrossRefGoogle Scholar
  3. Bakheit MA, Seitzer U, Ahmed JS. A new recombinant protein-based ELISA for the diagnosis of malignant theileriosis of sheep and goats. Parasitol Res. 2006;98(2):145–9.PubMedCrossRefGoogle Scholar
  4. Bilgic HB, Karagenç T, Shiels B, Tait A, Eren H, Weir W. Evaluation of cytochrome b as a sensitive target for PCR based detection of T. annulata carrier animals. Vet Parasitol. 2010;174(3-4):341–7.  https://doi.org/10.1016/j.vetpar.2010.08.025. Epub 2010 Sep 28.PubMedCrossRefGoogle Scholar
  5. Bilgiç HB, Karagenç T, Simuunza M, Shiels B, Tait A, Eren H, Weir W. Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Exp Parasitol. 2012;133(2):222–9.  https://doi.org/10.1016/j.exppara.2012.11.005.PubMedCrossRefGoogle Scholar
  6. Bishop R, Sohanpal B, Kariuki DP, Young AS, Nene V, Baylis H, Allsopp BA, Spooner PR, Dolan TT, Morzaria SP. Detection of a carrier state in Theileria parva-infected cattle by the polymerase chain reaction. Parasitology. 1992;104(2):215–32.PubMedCrossRefGoogle Scholar
  7. Bishop R, Nene V, Staeyert J, Rowlands J, Nyanjui J, Osaso J, Morzaria S, Musoke A. Immunity to East Coast fever in cattle induced by a polypeptide fragment of the major surface coat protein of Theileria parva sporozoites. Vaccine. 2003;21(11-12):1205–12.PubMedCrossRefGoogle Scholar
  8. Bishop R, Musoke A, Morzaria S, Gardner M, Nene V. Theileria: intracellular protozoan parasites of wild and domestic ruminants transmitted by Ixodid ticks. Parasitology. 2004;129:S271–83.  https://doi.org/10.1017/S0031182003004748.PubMedCrossRefGoogle Scholar
  9. Botteron C, Dobbelaere D. AP-1 and ATF-2 are constitutively activated via the JNK pathway in Theileria parva-transformed T-cells. Biochem Biophys Res Commun. 1998;246:418–21.PubMedCrossRefGoogle Scholar
  10. Boulter N, Brown D, Wilkie G, Williamson S, Kirvar E, Knight P, Glass E, Campbell J, Morzaria S, Nene V, Musoke A, d'Oliveira C, Gubbels MJ, Jongejan F, Hall R. Evaluation of recombinant sporozoite antigen SPAG-1 as a vaccine candidate against Theileria annulata by the use of different delivery systems. Tropical Med Int Health. 1999;4(9):A71–7.CrossRefGoogle Scholar
  11. Chaisi ME, Janssens ME, Vermeiren L, Oosthuizen MC, Collins NE, Geysen D. Evaluation of a real-time PCR test for the detection and discrimination of Theileria species in the African buffalo (Syncerus caffer). PLoS One. 2013;8(10):e75827.  https://doi.org/10.1371/journal.pone.0075827. eCollection 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chaisi ME, Collins NE, Marinda C, Oosthuizen MC. Phylogeny of Theileria Buffeli genotypes identified in the south African buffalo (Syncerus caffer) population. Vet Parasitol. 2014;204(3):87–95.  https://doi.org/10.1016/j.vetpar.2014.06.001.PubMedCrossRefGoogle Scholar
  13. Chaussepied M, Lallemand D, Moreau MF, Adamson R, Hall R, Langsley G. Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP-1 activation in Theileria-transformed leukocytes. Mol Biochem Parasitol. 1998;94:215–26.PubMedCrossRefGoogle Scholar
  14. Chaussepied M, Michie AM, Moreau MF, Harnett MM, Harnett W, Langsley G. Notch is constitutively active in Theileria-transformed B cells and can be further stimulated by the filarial nematode-secreted product, ES-62. Microbes Infect. 2006;8:1189–91.PubMedCrossRefGoogle Scholar
  15. Chaussepied M, Janski N, Baumgartner M, Lizundia R, Jensen K, Weir W, Shiels BR, Weitzman JB, Glass EJ, Werling D, Langsley G. TGF-b2 induction regulates invasiveness of Theileria-transformed leukocytes and disease susceptibility. PLoS Pathog. 2010;6(11):e1001197.  https://doi.org/10.1371/journal.ppat.1001197.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cheeseman K, Weitzman JB. Host-parasite interactions: an intimate epigenetic relationship. Cell Microbiol. 2015;17(8):1121–32.PubMedCrossRefGoogle Scholar
  17. Coleman PG, Perry BD, Woolhouse MEJ. Endemic stability-a veterinary idea applied to human public health. Lancet. 2001;357:1284–6.PubMedCrossRefGoogle Scholar
  18. Darghouth MA, Boulter NR, Gharbi M, Sassi L, Tait A, Hall R. Vaccination of calves with an attenuated cell line of Theileria annulata and the sporozoite antigen SPAG-1 produces a synergistic effect. Vet Parasitol. 2006;142(1-2):54–62.PubMedCrossRefGoogle Scholar
  19. de Castro JJ, Capstick PB, Nokoe S, Kiara HK, FGR R. Towards selection of cattle for tick resistance in Africa. Exp Appl Acarol. 1991;12:219–27.PubMedCrossRefGoogle Scholar
  20. De Deken R, Martin V, Saido A, Madder M, Brandt J, Geysen D. An outbreak of East Coast fever on the Comoros: a consequence of the import of immunized cattle from Tanzania? Vet Parasitol. 2007;143:245–53.PubMedCrossRefGoogle Scholar
  21. DeMartini JC, Baldwin CL. Effects of gamma interferon, tumor necrosis factor alpha, and interleukin-2 on infection and proliferation of Theileria parva-infected bovine lymphoblasts and production of interferon by parasitized cells. Infect Immun. 1991;59:4540–6.PubMedPubMedCentralGoogle Scholar
  22. Dobbelaere DA, Rottenberg S. Theileria-induced leukocyte transformation. Curr Opin Microbiol. 2003;6:377–82.PubMedCrossRefGoogle Scholar
  23. Dobbelaere DA, Coquerelle TM, Roditi IJ, Eichhorn M, Williams RO. Theileria parva infection induces autocrine growth of bovine lymphocytes. Proc Natl Acad Sci U S A. 1988;85:4730–4.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dolan TT. Theileriosis: a comprehensive review. Rev Sci Tech Off Int Epiz. 1989;8(1):11–36.CrossRefGoogle Scholar
  25. d’Oliveira C, van der Weide M, Habela MA, Jacquiet P, Jongejan F. Detection of Theileria annulata in blood samples of carrier cattle by PCR. J Clin Microbiol. 1995;33(10):2665–9.PubMedPubMedCentralGoogle Scholar
  26. FAO. Tick and Tick-borne disease control: The Sudan. Studies on important Tick-borne diseases of cattle. Technical report no. 2. AG:GCP/SUD/024/DEN. Rome: Food and Agriculture Organization; 1983.Google Scholar
  27. Fich C, Klauenberg U, Fleischer B, Broker BM. Modulation of enzymatic activity of Src-family kinases in bovine T cells transformed by Theileria parva. Parasitology. 1998;117(2):107–15.PubMedCrossRefGoogle Scholar
  28. Francia ME, Striepen B. Cell division in apicomplexan parasites. Nat Rev Microbiol. 2014;12:125–36.PubMedCrossRefGoogle Scholar
  29. Galley Y, Hagens G, Glaser I, Davis W, Eichhorn M, Dobbelaere D. Jun NH2-terminal kinase is constitutively activated in T cells transformed by the intracellular parasite Theileria parva. Proc Natl Acad Sci U S A. 1997;94:5119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gebrekidan H, Hailu A, Kassahun A, Rohouˇsová I, Maia C, Talmi-Frank D, Warburg A, Baneth G. Theileria infection in domestic ruminants in northern Ethiopia. Vet Parasitol. 2014;200(1):31–8.  https://doi.org/10.1016/j.vetpar.2013.11.017.PubMedCrossRefGoogle Scholar
  31. Gill BS, Bhattacharyulu Y, Kaur D. Symptoms and pathology of experimental bovine tropical theileriosis (Theileria annulata infection). Ann Parasitol Hum Comp. 1977;52(6):597–608.PubMedCrossRefGoogle Scholar
  32. Glass EJ, Preston PM, Springbett A, Craigmile S, Kirvar E, Wilkie G, Brown CGD. Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. Int J Parasitol. 2005;35:337–47.  https://doi.org/10.1016/j.ijpara.2004.12.006.PubMedCrossRefGoogle Scholar
  33. Goh S, Ngugi D, Lizundia R, Hostettler I, Woods K, Ballingal K. Identification of Theileria lestoquardi antigens recognized by CD8+T cells. PLoS One. 2016;11(9):e0162571.  https://doi.org/10.1371/journal.pne.0162571.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gou H, Guan G, Ma M, Liu A, Liu Z, Xu Z, Ren Q, Li Y, Yang J, Chen Z, Yin H, Luo J. Phylogenetic analysis of ruminant Theileria spp. from China based on 28S ribosomal RNA gene. Korean J Parasitol. 2013;51(5):511–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Graham SP, Brown DJ, Vatansever Z, Waddington D, Taylor LH, Nichani AK, Campbell JD, Adamson RE, Glass EJ, Spooner RL. Proinflammatory cytokine expression by Theileria annulata infected cell lines correlates with the pathology they cause in vivo. Vaccine. 2001;619(20-22):2932–44.CrossRefGoogle Scholar
  36. Graham SP, Pellé R, Honda Y, Mwangi DM, Tonukari NJ, Yamage M, Glew EJ, de Villiers EP, Shah T, Bishop R, Abuya E, Awino E, Gachanja J, Luyai AE, Mbwika F, Muthiani AM, Ndegwa DM, Njahira M, Nyanjui JK, Onono FO, Osaso J, Saya RM, Wildmann C, Fraser CM, Maudlin I, Gardner MJ, Morzaria SP, Loosmore S, Gilbert SC, Audonnet JC, van der Bruggen P, Nene V, Taracha EL. Proc Natl Acad Sci U S A. 2006;103(9):3286-3291.Google Scholar
  37. Gubbels JM, de Vos AP, van der Weide M, Viseras J, Schouls LM, de Vries E, Jongejan F. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol. 1999;37(6):1782–9.PubMedPubMedCentralGoogle Scholar
  38. Gubbels MJ, d’Oliveira C, Jongejan F. Development of an indirect Tams1 enzyme-linked immunosorbent assay for diagnosis of Theileria annulata infection in cattle. Clin Diagn Lab Immunol. 2000.Google Scholar
  39. Hagiwara K, Tokuda M, Baba T, Yamanaka H, Kirisawa R, Tsuji M, Ishihara C, Iwai H. The role of IFN-gamma in cattle infected with Theileria sergenti. Vet Parasitol. 2005;127(2):105–10.PubMedCrossRefGoogle Scholar
  40. Haidar M, Whitworth J, Noé G, Liu WQ, Vidal M, Langsley G. TGF-β2 induces Grb2 to recruit PI3-K to TGF-RII that activates JNK/AP-1-signaling and augments invasiveness of Theileria-transformed macrophages. Sci Rep. 2015a;29(5):15688.  https://doi.org/10.1038/srep15688.CrossRefGoogle Scholar
  41. Haidar M, Echebli N, Ding Y, Kamau E, Langsley G. Transforming growth factor β2 promotes transcription of COX2 and EP4, leading to a prostaglandin E2-driven autostimulatory loop that enhances virulence of Theileria annulata-transformed macrophages. Infect Immun. 2015b;83(5):1869–80.  https://doi.org/10.1128/IAI.02975-14.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hashemi-Fesharki R. Control of Theileria annulata in Iran. Parasitol Today. 1988;4:36–40.PubMedCrossRefGoogle Scholar
  43. Hayashida K, Hattori M, Nakao R, Tanaka Y, Kim JY, Inoue N, Nene V, Sugimoto C. A schizont-derived protein, TpSCOP, is involved in the activation of NF-kappaB in Theileria parva-infected lymphocytes. Mol Biochem Parasitol. 2010;174:8–17.PubMedCrossRefGoogle Scholar
  44. Heidarpour Bami M, Haddadzadeh HR, Kazemi B, Khazraiinia P, Bandehpour M, Aktas M. Molecular identification of ovine Theileria species by a new PCR-RFLP method. Vet Parasitol. 2009;161(3-4):171–7.  https://doi.org/10.1016/j.vetpar.2009.01.035.PubMedCrossRefGoogle Scholar
  45. Hermann P, Dobbelaere DA. Theileria-induced constitutive IKK activation is independent of functional Hsp90. FEBS Lett. 2006;580:5023–8.PubMedCrossRefGoogle Scholar
  46. Imam AH, Taha KM. Malignant ovine Theileriosis (Theileria lestoquardi): a review. Jordan J Bio Sci. 2015;8(3):165–74.CrossRefGoogle Scholar
  47. Irvin AD. Characterization of species and strains of Theileria. Adv Parasitol. 1987;26:145–97.PubMedCrossRefGoogle Scholar
  48. Irvin AD, Mwamachi DM. Clinical and diagnostic features of East Coast fever (Theileria parva) infection of cattle. Vet Rec. 1983;113(9):192–8.PubMedCrossRefGoogle Scholar
  49. Irvin AD, Brown CGD, Burridge MJ, Cunningham MP, Musoke AJ, Peirce MA, Purnell RE, Radley DE. A pathogenic theilerial syndrome of cattle in in the Narok District of Kenya. 1. Transmission studies. Trop Anim Health Prod. 1972;4:220–9.PubMedCrossRefGoogle Scholar
  50. Islam MK, Jabbar A, Campbell BE, Cantacessi C, Gasser RB. Bovine theileriosis-an emerging problem in south eastern Australia. Infect Genet Evol. 2011;11(8):2095–7.  https://doi.org/10.1016/j.meegid.2011.08.012.PubMedCrossRefGoogle Scholar
  51. Ivanov V, Stein B, Baumann I, Dobbelaere DA, Herrlich P, Williams RO. Infection with the intracellular protozoan parasite Theileria parva induces constitutively high levels of NF-kappa B in bovine T lymphocytes. Mol Cell Biol. 1989;9:4677–86.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Izzo MM, Poe I, Horadagoda N, De Vos AJ, House JK. Haemolytic anaemia in cattle in NSW associated with Theileria infections. Aust Vet J. 2010;88:45–51.  https://doi.org/10.1111/j.1751-0813.2009.00540.x.PubMedCrossRefGoogle Scholar
  53. Kamau J, de Vos JA, Playford M, Salim B, Kinyanjui P, Sugimoto C. Emergence of new types of Theileria orientalis in Australian cattle and possible cause of theileriosis outbreaks. Parasit Vectors. 2011;4:22.  https://doi.org/10.1186/1756-3305-4-22.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Katende JM, Goddeeris BM, Morzaria SP, Nkonge CG, Musoke AJ. Identification of a Theileria mutans-specific antigen for use in an antibody and antigen detection ELISA. Parasite Immunol. 1990;12(4):419–33.PubMedCrossRefGoogle Scholar
  55. Kirvar E, Ilhan T, Katzer F, Hooshmand-Rad P, Zweygarth E, Gerstenberg C, Phipps P, Brown CG. Detection of Theileria annulata in cattle and vector ticks by PCR using the Tams1 gene sequences. Parasitology. 2000;120(3):245–54.PubMedCrossRefGoogle Scholar
  56. Kivaria FM, Kapaga AM, Mbassa GK, Mtui PF, Wani RJ. Epidemiological perspectives of ticks and tick-borne diseases in South Sudan: cross-sectional survey results. Onderstepoort J Vet Res. 2012;79(1):E1–E10.  https://doi.org/10.4102/ojvr.v79i1.400.PubMedCrossRefGoogle Scholar
  57. Lawrence JA. The differential diagnosis of the bovine theileriosis of southern Africa. J S Afr VetMed Assoc. 1979;50:311–3.Google Scholar
  58. Levine ND, Corliss Cox FEG, Deroux G, Grain J, Honigberg BN, Leedale GF, Loeblich AR II, Lom J, Lynn DH, Nerinfield FG, Page FC, Poljansky G, Sprague V, Vaura J, Wallace FG. A newly revised classification of the protozoa. J Protozool. 1980;27:37–8.PubMedCrossRefGoogle Scholar
  59. Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Phil Trans R Soc. 2010;365:749–63.CrossRefGoogle Scholar
  60. Liu A, Guan G, Liu Z, Liu J, Leblanc N, Li Y, Gou J, Ma M, Niu Q, Ren Q, Bai Q, Yin H, Luo J. Detecting and differentiating Theileria sergenti and Theileria sinensis in cattle and yaks by PCR based on major piroplasm surface protein (MPSP). Exp Parasitol. 2010;126:476–81.PubMedCrossRefGoogle Scholar
  61. Liu A, Guan G, Du P, Liu Z, Gou H, Liu J, Yang J, Li Y, Ma M, Niu Q, Ren Q, Bai Q, Yin H, Luo J. Loop-mediated isothermal amplification (LAMP) assays for the detection of Theileria annulata infection in China targeting the 18S rRNA and ITS sequences. Exp Parasitol. 2012;131(1):125–9.  https://doi.org/10.1016/j.exppara.2012.02.012.PubMedCrossRefGoogle Scholar
  62. Lizundia R, Werling D, Langsley G, Ralph SA. Theileria Apicoplast as a target for chemotherapy. Antimicrob Agents Chemother. 2009;53(3):1213–7.PubMedCrossRefGoogle Scholar
  63. Malak AK, Mpoke L, Banak J, Muriuki S, Skilton RA, Odongo D, Sunter J, Kiara H. Prevalence of livestock diseases and their impact on livelihoods in central Equatoria state, southern Sudan. Prev Vet Med. 2012;104(3-4):216–23.PubMedCrossRefGoogle Scholar
  64. Manuja A, Malhotra DV, Sikka VK, Sangwan AK, Sharma R, Kumar B, Mehta BD, Gulati BR, Nichani AK. Isolates of Theileria Annulata collected from different parts of India show phenotypic and genetic diversity. Vet Parasitol. 2006;137:242–52.  https://doi.org/10.1016/j.vetpar.2006.01.021.PubMedCrossRefGoogle Scholar
  65. Martín-Sánchez J, Viseras J, Adroher FJ, García-Fernández P. Nested polymerase chain reaction for detection of Theileria annulata and comparison with conventional diagnostic techniques: its use in epidemiology studies. Parasitol Res. 1999;85(3):243–5.PubMedCrossRefGoogle Scholar
  66. McDougall S, Hillerton JE, Pegram D. Concentrations of buparvaquone in milk and tissue of dairy cows. N Z Vet J. 2016;64(6):318–23.  https://doi.org/10.1080/00480169.2016.1204960. Epub 2016 Jul 13.PubMedCrossRefGoogle Scholar
  67. McHardy N. Buparvaquone, the new antitheilerial: a review of its efficacy and safety. FAO Corporate Document Repository. 1999. http://www.fao.org/wairdocs/ilri/x5549e/x5549e11.htm.
  68. McKeever DJ, Nyanjui JK, Ballingall KT. In vitro infection with Theileria parva is associated with IL10 expression in all bovine lymphocyte lineages. Parasite Immunol. 1997;19:319–24.PubMedCrossRefGoogle Scholar
  69. McLeod R, Kristjanson P. Impact of ticks and associated diseases on cattle in Asia, Australia and Africa, ILRI and eSYS report to ACIAR. Nairobi, Kenya: International Livestock Research Institute; 1999.Google Scholar
  70. Mehlhorn H, Schein E. The piroplasms: life cycle an sexual stages. Adv Parasitol. 1984;23:37–103.PubMedCrossRefGoogle Scholar
  71. Mhadhbi M, Naouach A, Boumizab A, Chaabani FM, BenAbderazzak S, Darghouth MA. In vivo evidence for resistance of Theileria annulata to buparvaquone. Vet Parasitol. 2010;169:241–7.PubMedCrossRefGoogle Scholar
  72. Minjauw B, McLeod A. Tick-borne diseases and poverty. The impact of ticks and tick- borne diseases on the livelihood of small-scale and marginal livestock owners in India and eastern and southern Africa. Research report, DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh, UK; 2003.Google Scholar
  73. Moll G, Lohding A, Young AS, Leitch BL. Epidemiology of theileriosis in calves in an endemic area of Kenya. Vet Parasitol. 1986;19:255–73.PubMedCrossRefGoogle Scholar
  74. Moore RB, Obornik M, Janouskovec J, Chrudinmsky T, Vancová M, Green DH, et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–63.PubMedCrossRefGoogle Scholar
  75. Morrison WI, MacHugh ND, Lalor PA. Pathogenicity of Theileria parva is influenced by the host cell type infected by the parasite. Infect Immun. 1996;64:557–62.PubMedPubMedCentralGoogle Scholar
  76. Morzaria SP, Katende J, Musoke A, Nene V, Skilton R, Bishop R. Development of sero-diagnostic and molecular tools for the control of important tick-borne pathogens of cattle in Africa. Parassitologia. 1999;41(1):73–80. Review.PubMedGoogle Scholar
  77. Mukhebi AW, Perry BD, Kruska RL. Estimated economics of theileriosis control in Africa. Prev Vet Med. 1992;12:73–85.CrossRefGoogle Scholar
  78. Musoke A, Morzaria S, Nkonge C, Jones E, Nene V. A recombinant sporozoite surface antigen of Theileria parva induces protection in cattle. Proc Natl Acad Sci U S A. 1992;89(2):514–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. National Center for Biotechnology Information, Taxonomy. https://www.ncbi.nlm.nih.gov/taxonomy. 2017. Accessed 20 Aug 2017.
  80. Nene V, Kiara H, Lacasta A, Pelle R, Svitek N, Steinaa L. The biology of Theileria parva and control of East Coast fever-current status and future trends. Ticks Tick Borne Dis. 2016;7:549–64.PubMedCrossRefGoogle Scholar
  81. Norval RAI, Perry BD, Gebreab F, Lessard P. East Coast fever: a problem of the future for the horn of Africa? Prev Vet Med. 1991;10:163–72.CrossRefGoogle Scholar
  82. Norval RAI, Perry BD, Young A. The epidemiology of Theileriosis in Africa. London: Academic; 1992.Google Scholar
  83. Odongo DO, Oura CAL, Spooner PR, Kiara H, Mburu D, Hanotte OH, Bishop RB. Linkage disequilibrium between alles at highly polymorphic mini-and microsatellite loci of Theileria parva isolated from cattle in three regions of Kenya. Int J Parasitol. 2006;36:937–46.PubMedCrossRefGoogle Scholar
  84. Odongo DO, Sunter JD, Kiara HK, Skilton RA, Bishop RP. A nested PCR assay exhibits enhanced sensitivity for detection of Theileria parva infections in bovine blood samples from carrier animals. Parasitol Res. 2010;106(2):357–65.  https://doi.org/10.1007/s00436-009-1670-z. Epub 2009 Nov 10.PubMedCrossRefGoogle Scholar
  85. OIE. Theileriosis. OIE Terrestrial manual, 2008.Google Scholar
  86. Oura CAL, Odongo DO, Lubega GW, Spooner PR, Tait A, Bishop RP. A panel of microsatelite and minisatelite makers for the characterization of field isolates of Theileria parva. Int J parasitol. 2003;33:1641–53.PubMedCrossRefGoogle Scholar
  87. Oura CAL, Asiimwe BB, Weir W, Lubega GW, Tait A. Population genetic analysis and sub-structuring of Theileria parva in Uganda. Mol Biochem Parasitol. 2005;140:229–39.PubMedCrossRefGoogle Scholar
  88. Oura CA, McKellar S, Swan DG, Okan E, Shiels BR. Infection of bovine cells by the protozoan parasite Theileria annulata modulates expression of the ISGylation system. Cell Microbiol. 2006;8:276–88.PubMedCrossRefGoogle Scholar
  89. Palmer GH, Machado J Jr, Fernandez P, Heussler V, Perinat T, Dobbelaere DA. Parasite-mediated nuclear factor kappaB regulation in lymphoproliferation caused by Theileria parva infection. Proc Natl Acad Sci U S A. 1997;94:12527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Papli N, Landt O, Fleischer C, Koekemoer JO, Mans BJ, Pienaar R, Josemans A, Zweygarth E, Potgieter F, Latif AA. Evaluation of a TaqMan real-time PCR for the detection of Theileria parva in buffalo and cattle. Vet Parasitol. 2011;175(3-4):356–9.  https://doi.org/10.1016/j.vetpar.2010.10.038. Epub 2010 Oct 27.PubMedCrossRefGoogle Scholar
  91. Patel E, Mwaura S, Kiara H, Morzaria S, Peters A, Toye P. Production and dose determination of the ITM method (ITM) MC vaccine used to control East Coast fever in cattle. Ticks Tick Borne Dis. 2016;7(2):306–14.PubMedCrossRefGoogle Scholar
  92. Perry BD, Young AS. The naming game: the changing fortunes of East Coast fever and Theileria parva. Vet Rec. 1993;133:613–6.PubMedGoogle Scholar
  93. Pienaar R, Potgieter FT, Latif AA, Thekisoe OM, Mans BJ. The hybrid II assay: a sensitive and specific real-time hybridization assay for the diagnosis of Theileria parva infection in cape buffalo (Syncerus caffer) and cattle. Parasitology. 2011;138(14):1935–44.  https://doi.org/10.1017/S0031182011001454. Epub 2011 Sep 9.
  94. Pipano E, Shkap V. Vaccination against tropical theileriosis. Ann N Y Acad Sci. 2000;916:484–500. Review.PubMedCrossRefGoogle Scholar
  95. Purnell RE. East Coast fever: some recent research in East Africa. Adv Parasitol. 1977;15:83–132.PubMedCrossRefGoogle Scholar
  96. Radley DE, Brown CGD, Cunningham MP, Kimber CD, Musisi FL, Payne RC, Purnell RE, Stagg DA, Young AS. East Coast fever. 3. Chemoprophylactic immunization of cattle using oxytetracycline and a combination of Theileria strains. Vet Parasitol. 1975;1:51–60.CrossRefGoogle Scholar
  97. Renneker S, Kullmann B, Gerber S, Dobschanski J, Bakheit MA, Geysen D, Shiels B, Tait A, Ahmed JS, Seitzer U. Development of a competitive ELISA for detection of Theileria annulata infection. Transbound Emerg Dis. 2008;55(5-6):249–56.  https://doi.org/10.1111/j.1865-1682.2008.01036.x.PubMedCrossRefGoogle Scholar
  98. Ros-García A, Juste RA, Hurtado AA. Highly sensitive DNA bead-based suspension array for the detection and species identification of bovine piroplasms. Int J Parasitol. 2011;42(2):207–14.  https://doi.org/10.1016/j.ijpara.2011.12.001. Epub 2011 Dec 27.PubMedCrossRefGoogle Scholar
  99. Ros-García A, Nicolás A, García-Pérez AL, Juste RA, Hurtado A. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle. Parasit Vectors. 2012;5:171.  https://doi.org/10.1186/1756-3305-5-171.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Salih DA, Liu Z, Bakheit MA, Ali AM, El Hussein AM, Unger H, Viljoen G, Seitzer U, Ahmed JS. Development and evaluation of a loop-mediated isothermal amplification method for diagnosis of tropical theileriosis. Transbound Emerg Dis. 2008;55(5-6):238–43.  https://doi.org/10.1111/j.1865-1682.2008.01033.x.PubMedCrossRefGoogle Scholar
  101. Salih DA, Ali AM, Liu Z, Bakheit MA, Taha KM, El Imam AH, Kullmann B, El Hussein AM, Ahmed JS, Seitzer U. Development of a loop-mediated isothermal amplification method for detection of Theileria lestoquardi. Parasitol Res. 2012;110(2):533–8.  https://doi.org/10.1007/s00436-011-2518-x.PubMedCrossRefGoogle Scholar
  102. Santos M, Soares R, Costa P, Amaro A, Inácio J, Gomes J. Revisiting the Tams1-encoding gene as a species-specific target for the molecular detection of Theileria annulata in bovine blood samples. Ticks Tick Borne Dis. 2013;4(1-2):72–7.  https://doi.org/10.1016/j.ttbdis.2012.07.006. Epub 2012 Dec 11.PubMedCrossRefGoogle Scholar
  103. Schnittger L, Yin H, Qi B, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS. Simultaneous detection and differentiation of Theileria and Babesia parasites infecting small ruminants by reverse line blotting. Parasitol Res. 2004;92(3):189–96. Epub 2003 Dec 3PubMedCrossRefGoogle Scholar
  104. Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12:1788–809.PubMedCrossRefGoogle Scholar
  105. Seitzer U, Schnittger L, Boguslawski K, Ahmed JS. Investigation of MAP kinase activation in Theileria-infected cell lines. Ann N Y Acad Sci. 2006;1081:473–5.PubMedCrossRefGoogle Scholar
  106. Seitzer U, Bakheit MA, Salih DE, Ali A, Haller D, Yin H, Schnittger L, Ahmed J. From molecule to diagnostic tool: Theileria annulata surface protein TaSP. Parasitol Res. 2007;101(2):S217–23. Review.PubMedCrossRefGoogle Scholar
  107. Shaw MK, Tilney LG, Musoke AJ. The entry of Theileria parva sporozoites in bovine lymphocytes: evidence for MHC class I involvement. J Cell Biol. 1991;113:87–101.PubMedCrossRefGoogle Scholar
  108. Shaw MK, Tilney LG, McKeever DJ. Tick salivary gland extract and interleukin-2 stimulation enhance susceptibility of lymphocytes to infection by Theileria parva sporozoites. Infect Immun. 1993;61:1486–95.Google Scholar
  109. Sibeko KP, Oosthuizen MC, Collins NE, Geysen D, Rambritch NE, Latif AA, Groeneveld HT, Potgieter FT, Coetzer JA. Development and evaluation of a real-time polymerase chain reaction test for the detection of Theileria parva infections in cape buffalo (Syncerus Caffer) and cattle. Vet Parasitol. 2008;155(1-2):37–48.  https://doi.org/10.1016/j.vetpar.2008.03.033. Epub 2008 Jun 2.
  110. Sitt T, Poole EJ, Ndambuki G, Mwaura S, Njoroge T, Omondi GP, Mutinda M, Mathenge J, Prettejohn G, Morrison IW, P( T. Exposure of vaccinated and naive cattle to natural challenge from buffalo-derived Theileria parva. Int J Parasitol Parasites Wildl. 2015;4:244–51.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Skilton RA, Bishop RP, Katende JM, Mwaura S, Morzaria SP. The persistence of Theileria parva infection in cattle immunized using two stocks which differ in their ability to induce a carrier state: analysis using a novel blood spot PCR assay. Parasitology. 2002;124(3):265–76.PubMedCrossRefGoogle Scholar
  112. Spitalska E, Torina A, Cannella V, Caracappa S, Sparagano O. Discrimination between Theileria lestquardi and Theileria annulata in their vectors and hosts by RFLP based on the 18S rRNA gene. Parasitol Res. 2004;94(4):318–20.PubMedCrossRefGoogle Scholar
  113. Striepen B, Jordan CN, Reiff S, van Dooren GG. Building the perfect parasite: cell division in Apicomplexa. PLoS Pathog. 2007;3(6):691–8.CrossRefGoogle Scholar
  114. Sugimoto C, Fujisaki K. Non-transforming Theileria parasites of ruminants. In: Dobbelaere D, McKeever D, editors. World class parasites, vol 3, Theileria. New York: Springer Science and Business Media LLC; 2002.CrossRefGoogle Scholar
  115. Thekisoe OM, Rambritch NE, Nakao R, Bazie RS, Mbati P, Namangala B, Malele I, Skilton RA, Jongejan F, Sugimoto C, Kawazu S, Inoue N. Loop-mediated isothermal amplification (LAMP) assays for detection of Theileria parva infections targeting the PIM and p150 genes. Int J Parasitol. 2010;40(1):55–61.  https://doi.org/10.1016/j.ijpara.2009.07.004.PubMedCrossRefGoogle Scholar
  116. Thompson BE, Latif AA, Oosthuizen MC, Troskie M, Penzhorn BL. Occurrence of Theileria parva infection in cattle on a farm in the Ladysmith district, KwaZulu-Natal, South Africa. J S Afr Vet Assoc. 2008;79(1):31–5.PubMedCrossRefGoogle Scholar
  117. Tretina K, Gotia HT, Mann DJ, Silva JC. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol. 2015;31:306–14.PubMedCrossRefGoogle Scholar
  118. Uilenberg G. Tick-borne livestock diseases and their vectors. 2. Epizootiology of tick borne diseases. World Anim Rev. 1976;17:8–15.Google Scholar
  119. Uilenberg G. Theileria species of domestic animals. In: Irvin AD, Cunningham MP, Young AS, editors. Advances in the control of Theileriosis. Proceedings of an International Conference. ILRAD, Nairobi, 9-13 February 1981. The Hague: Martinus Nijhoff; 1981. p. 227–37.Google Scholar
  120. Uilenberg G. International collaborative research: significance of tick-borne hemoparasitic diseases to world animal health. Vet Parasitol. 1995;57:10–41.CrossRefGoogle Scholar
  121. Wani LM, Salih DA, Julla II, Rahim MA, Hussein E. Seroprevalence of East coast fever in Central Equatorial State, South Sudan. Vet Ital. 2012;48(4):379–85.Google Scholar
  122. Weir W, Karagen T, Gharbi M, Simuunza M, Aypak S, Aysul N, Darghouth MA, Shiels B, Tait A. Population diversity and multiplicity of infection in Theileria annulata. Int J Parasitol. 2011;41:193–20.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Woolhouse MEJ, Thumbi SM, Jennings A, Chase-Topping M, Callaby R, Kiara H, Oosthuizen MC, Mbole-Kariuki MN, Conradie I, Handel IG, Poole EJ, Njiiri E, Collins NE, Murray G, Tapio M, Auguet OT, Weir W, Morrison WI, Kruuk LEB, Bronsvoort BMC, Hanottee O, Coetzer K, Toye PG. Co-infections determine patterns of mortality in a population exposed to parasite infection. Sci Adv. 2015;1:e1400026.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yamaguchi T, Yamanaka M, Ikehara S, Kida K, Kuboki N, Mizuno D, Yokoyama N, Narimatsu H, Ikehara Y. Generation of IFN-gamma-producing cells that recognize the major piroplasm surface protein in Theileria orientalis-infected bovines. Vet Parasitol. 2010;171(3-4):207–15.  https://doi.org/10.1016/j.vetpar.2010.03.038.PubMedCrossRefGoogle Scholar
  125. Young AS. The epidemiology of theileriosis in East Africa. In: Irvin AD, Cunningham MP, Young AS, editors. Advances in the control of Theileriosis. Proceedings of an International Conference. ILRAD, Nairobi, 9-13 February. The Hague: Martinus Nijhoff; 1981. p. 227–37.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Henry Kiara
    • 1
  • Lucilla Steinaa
    • 1
  • Vishvanath Nene
    • 1
  • Nicholas Svitek
    • 1
  1. 1.International Livestock Research InstituteNairobiKenya

Personalised recommendations