Leishmania

  • Anabel Elisa Rodriguez
  • José Octavio Estévez
  • María Cecilia Nevot
  • Alejandra Barrios
  • Monica Florin-Christensen
Chapter

Abstract

Leishmania spp. are kinetoplastid protozoan parasites that infect numerous mammalian hosts, including humans, and are transmitted by the bite of female phlebotomine sand flies. Their distribution area has been broadly subdivided into the “New World”–the Americas, and the “Old World”–Africa, Asia, and Europe. The disease complex they cause, known as leishmaniosis or leishmaniasis, is endemic in large areas of the tropics, subtropics, and the Mediterranean basin, affecting more than 98 countries. More than 23 species of Leishmania have been described, most of which are zoonotic. The most important Leishmania parasite that infects domestic animals is L. infantum, also known as L. chagasi in Latin America. Dogs are very susceptible to this parasite and act as reservoirs. They may suffer from a complex and deadly syndrome, canine leishmaniosis, though many course asymptomatic infections. Cats and horses can also be infected, with milder clinical manifestations. Several serological and molecular diagnostic methods have been developed, but the gold standard is still the demonstration of parasites in stained tissue smears. Control strategies are largely limited to destruction of animal reservoirs, treatment of infected patients, and management of sand fly populations. Development of an effective vaccine against leishmaniosis is an active field of research.

Keywords

Leishmaniasis Leishmaniosis Phlebotomine Sand flies Kinetoplastid Promastigote Amastigote 

References

  1. Adams ER, Schoone GJ, Ageed AF, et al. Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Leishmania parasites in clinical samples. Am J Trop Med Hyg. 2010;82:591–6.  https://doi.org/10.4269/ajtmh.2010.09-0369.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akopyants NS, Kimblin N, Secundino N, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–8.  https://doi.org/10.1126/science.1169464.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alcolea PJ, Alonso A, Gomez MJ, et al. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC Genomics. 2010;11:31.  https://doi.org/10.1186/1471-2164-11-31.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baneth G, Koutinas AF, Solano-Gallego L, et al. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part one. Trends Parasitol. 2008;24:324–30.  https://doi.org/10.1016/j.pt.2008.04.001.CrossRefPubMedGoogle Scholar
  5. Barroso PA, Nevot MC, Hoyos CL, et al. Genetic and clinical characterization of canine leishmaniasis caused by Leishmania (Leishmania) infantum in northeastern Argentina. Acta Trop. 2015;150:218–23.  https://doi.org/10.1016/j.actatropica.2015.08.007.CrossRefPubMedGoogle Scholar
  6. Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37:1097–106.  https://doi.org/10.1016/j.ijpara.2007.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bevilacqua PD, Alves WA. Reflexões sobre a qualidade do diagnóstico da leishmaniose visceral canina em inquéritos epidemiológicos: o caso da epidemia de Belo Horizonte, Minas Gerais, Brasil, 1993-1997. Cad Saude Publica. 2004;20:259–65.  https://doi.org/10.1590/S0102-311X2004000100043.CrossRefPubMedGoogle Scholar
  8. Bonfante-Garrido R, Melendez E, Torres R, et al. Enzootic equine cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg. 1981;75:471.CrossRefGoogle Scholar
  9. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria Brinkmann science 2004.Pdf. Science. 2004;303:1532–5.  https://doi.org/10.1126/science.1092385.CrossRefGoogle Scholar
  10. Calvo-Álvarez E, Álvarez-Velilla R, Jiménez M, et al. First evidence of intraclonal genetic exchange in trypanosomatids using two Leishmania infantum fluorescent transgenic clones. PLoS Negl Trop Dis. 2014;10(5):e0004741.  https://doi.org/10.1371/journal.pntd.0003075.CrossRefGoogle Scholar
  11. Chagas AC, Oliveira F, Debrabant A, et al. Lundep, a sand fly salivary endonuclease increases leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10(2):e1003923.  https://doi.org/10.1371/journal.ppat.1003923.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cowell R, Tyler R, Meinkoth J, DeNicola D. Diagnostic cytology and hematology of the dog and cat. Can Vet J. 2000;41:330.Google Scholar
  13. Dantas-Torres F, Solano-Gallego L, Baneth G, et al. Canine leishmaniosis in the old and new worlds: unveiled similarities and differences. Trends Parasitol. 2012;28:531–8.  https://doi.org/10.1016/j.pt.2012.08.007.CrossRefPubMedGoogle Scholar
  14. Dawit G. A review on biology, epidemiology and public health significance of Leishmaniasis. J Bacteriol Parasitol. 2013;4:2–7.  https://doi.org/10.4172/2155-9597.1000166.CrossRefGoogle Scholar
  15. De Almeida Curi NH, Miranda I, Talamoni SA. Serologic evidence of Leishmania infection in free-ranging wild and domestic canids around a Brazilian National Park. Mem Inst Oswaldo Cruz. 2006;101:99–101.  https://doi.org/10.1590/S0074-02762006000100019.CrossRefGoogle Scholar
  16. De Souza RF, dos Santos YL, de Souza Vasconcellos R, et al. Recombinant Leishmania (Leishmania) infantum Ecto-nucleoside triphosphate Diphosphohydrolase NTPDase-2 as a new antigen in canine visceral leishmaniasis diagnosis. Acta Trop. 2013;125:60–6.  https://doi.org/10.1016/j.actatropica.2012.09.011.CrossRefPubMedGoogle Scholar
  17. Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 2001;95:239–43.  https://doi.org/10.1016/S0035-9203(01)90223-8.CrossRefPubMedGoogle Scholar
  18. Dobson DE, Kamhawi S, Lawyer P, et al. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010;6(11):e1001185.  https://doi.org/10.1371/journal.ppat.1001185.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276.  https://doi.org/10.1186/1756-3305-5-276.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fatoux-Ardore M, Peysselon F, Weiss A, et al. Large-scale investigation of leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. Infect Immun. 2014;82:594–606.  https://doi.org/10.1128/IAI.01146-13.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fernandes CB, Junior JTM, De Jesus C, et al. Comparison of two commercial vaccines against visceral leishmaniasis in dogs from endemic areas: IgG, and subclasses, parasitism, and parasite transmission by xenodiagnosis. Vaccine. 2014;32:1287–95.  https://doi.org/10.1016/j.vaccine.2013.12.046.CrossRefPubMedGoogle Scholar
  22. França-Silva JC, Da Costa RT, Siqueira AM, et al. Epidemiology of canine visceral leishmaniosis in the endemic area of Montes Claros municipality, Minas Gerais state, Brazil. Vet Parasitol. 2003;111:161–73.  https://doi.org/10.1016/S0304-4017(02)00351-5.CrossRefPubMedGoogle Scholar
  23. Gallego Berenguer J. Manual de parasitología: morfología y biología de los parásitos de interés sanitario. Barcelona: Edicions Universitat Barcelona; 2014.Google Scholar
  24. Gossage SM, Rogers ME, Bates PA. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol. 2003;33:1027–34.  https://doi.org/10.1016/S0020-7519(03)00142-5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gramiccia M. Recent advances in leishmaniosis in pet animals: epidemiology, diagnostics and anti-vectorial prophylaxis. Vet Parasitol. 2011;181:23–30.  https://doi.org/10.1016/j.vetpar.2011.04.019.CrossRefPubMedGoogle Scholar
  26. Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. 2005;35:1169–80.CrossRefGoogle Scholar
  27. Guimarães-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, et al. 3′-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. Infect Immun. 2014;82:1732–40.  https://doi.org/10.1128/IAI.01232-13.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gupta G, Oghumu S, Satoskar AR. Chapter five—mechanisms of immune evasion in Leishmaniasis. In: Advances in applied microbiology. 2013. p. 155–84.Google Scholar
  29. Holzmuller P, Bras-Gonçalves R, Lemesre J-L. Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania. Parasitology. 2006;132(Suppl):S19–32.  https://doi.org/10.1017/S0031182006000837.CrossRefPubMedGoogle Scholar
  30. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9:604–15.  https://doi.org/10.1038/nrmicro2608.CrossRefPubMedGoogle Scholar
  31. Kelly PH, Bahr SM, Serafim TD, et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio. 2017;8:e01121-16.  https://doi.org/10.1128/mBio.01121-16.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Killick Kendrick R, Rioux JA. Intravectorial cycle of Leishmania in sand flies. Ann Parasitol Hum Comp. 1991;66(Suppl 1):71–4.PubMedGoogle Scholar
  33. Koehler K, Stechele M, Hetzel U, et al. Cutaneous leishmaniosis in a horse in southern Germany caused by Leishmania infantum. Vet Parasitol. 2002;109:9–17.  https://doi.org/10.1016/S0304-4017(02)00246-7.CrossRefPubMedGoogle Scholar
  34. Kulkarni MM, Jones EA, McMaster WR, McGwire BS. Fibronectin binding and proteolytic degradation by Leishmania and effects on macrophage activation. Infect Immun. 2008;76:1738–47.  https://doi.org/10.1128/IAI.01274-07.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Laskay T, Van Zandbergen G, Solbach W. Neutrophil granulocytes—Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol. 2003;11:210–4.CrossRefGoogle Scholar
  36. Laurenti MD, de Santana Leandro MV, Tomokane TY, et al. Comparative evaluation of the DPP?? CVL rapid test for canine serodiagnosis in area of visceral leishmaniasis. Vet Parasitol. 2014;205:444–50.  https://doi.org/10.1016/j.vetpar.2014.09.002.CrossRefPubMedGoogle Scholar
  37. Lira R, Rosales-Encina JL, Argüello C. Leishmania mexicana: binding of promastigotes to type I collagen. Exp Parasitol. 1997;85:149–57.  https://doi.org/10.1006/expr.1996.4127.CrossRefPubMedGoogle Scholar
  38. Marcondes M, Biondo AW, Gomes AAD, et al. Validation of a Leishmania infantum ELISA rapid test for serological diagnosis of Leishmania chagasi in dogs. Vet Parasitol. 2011;175:15–9.  https://doi.org/10.1016/j.vetpar.2010.09.036.CrossRefPubMedGoogle Scholar
  39. Margonari C, Freitas CR, Ribeiro RC, et al. Epidemiology of visceral leishmaniasis through spatial analysis, in Belo Horizonte municipality, state of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2006;101:31–8.  https://doi.org/10.1590/S0074-02762006000100007.CrossRefPubMedGoogle Scholar
  40. Menezes JA, Ferreira E, De C, Andrade-Filho JD, et al. An integrated approach using spatial analysis to study the risk factors for Leishmaniasis in area of recent transmission. Biomed Res Int. 2015;2015:621854.  https://doi.org/10.1155/2015/621854.CrossRefPubMedPubMedCentralGoogle Scholar
  41. de Menezes JPB, Koushik A, Das S, et al. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cell Microbiol. 2016:1–9.  https://doi.org/10.1111/cmi.12668.
  42. Michalsky ÉM, Rocha MF, da Rocha Lima ACVM, et al. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia Longipalpis phlebotomine sand flies. Vet Parasitol. 2007;147:67–76.  https://doi.org/10.1016/j.vetpar.2007.03.004.CrossRefPubMedGoogle Scholar
  43. Millán J, Ferroglio E, Solano-Gallego L. Role of wildlife in the epidemiology of Leishmania infantum infection in Europe. Parasitol Res. 2014;113:2005–14.CrossRefGoogle Scholar
  44. Miró G, Gálvez R, Fraile C, et al. Infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after different treatments. Parasit Vectors. 2011;4:52.  https://doi.org/10.1186/1756-3305-4-52.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mol JPS, Soave SA, Turchetti AP, et al. Transmissibility of Leishmania infantum from maned wolves (Chrysocyon brachyurus) and bush dogs (Speothos venaticus) to Lutzomyia longipalpis. Vet Parasitol. 2015;212:86–91.  https://doi.org/10.1016/j.vetpar.2015.08.024.CrossRefPubMedGoogle Scholar
  46. Molina R, Amela C, Nieto J, et al. Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans R Soc Trop Med Hyg. 1994;88:491–3.  https://doi.org/10.1016/0035-9203(94)90446-4.CrossRefPubMedGoogle Scholar
  47. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15:62–9.CrossRefGoogle Scholar
  48. Müller N, Welle M, Lobsiger L, et al. Occurrence of Leishmania sp. in cutaneous lesions of horses in Central Europe. Vet Parasitol. 2009;166:346–51.  https://doi.org/10.1016/j.vetpar.2009.09.001.CrossRefPubMedGoogle Scholar
  49. Naucke TJ, Lorentz S. First report of venereal and vertical transmission of canine leishmaniosis from naturally infected dogs in Germany. Parasit Vectors. 2012;5:67.  https://doi.org/10.1186/1756-3305-5-67.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Naucke TJ, Amelung S, Lorentz S. First report of transmission of canine leishmaniosis through bite wounds from a naturally infected dog in Germany. Parasit Vectors. 2016;9:67.  https://doi.org/10.1186/1756-3305-5-67.CrossRefGoogle Scholar
  51. OIE. Leishmaniosis. In: Terrestial manual; 2014. p. 1–12.Google Scholar
  52. Oliva G, Foglia Manzillo V, Pagano A. Evoluzione dei protocolli terapeutici in corso di leishmaniosi canina. In: Parassitologia; 2004. p. 231–34.Google Scholar
  53. Otranto D, Dantas-Torres F. The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol. 2013;29:339–45.  https://doi.org/10.1016/j.pt.2013.05.003.CrossRefPubMedGoogle Scholar
  54. Pennisi MG. Leishmaniosis of companion animals in Europe: an update. Vet Parasitol. 2015;208(1-2):35–47.  https://doi.org/10.1016/j.vetpar.2014.12.023.CrossRefPubMedGoogle Scholar
  55. Pennisi M-G, Cardoso L, Baneth G, et al. Leishvet update and recommendations on feline leishmaniosis. Parasit Vectors. 2015;8:302.  https://doi.org/10.1186/s13071-015-0909-z.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pimenta PF, Modi GB, Pereira ST, et al. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology. 1997;115((Pt 4)):359–69.  https://doi.org/10.1017/S0031182097001510.CrossRefPubMedGoogle Scholar
  57. Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol. 2015;10:111–29.  https://doi.org/10.2217/fmb.14.103.CrossRefPubMedGoogle Scholar
  58. Ramalho-Ortigao M, Saraiva EM, Traub-Csekö YM. Sand fly-Leishmania interactions: long relationships are not necessarily easy. Open Parasitol J. 2010;4:195–204.  https://doi.org/10.2174/1874421401004010195.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ready PD. Leishmaniasis emergence and climate change. Rev Sci Tech. 2008;27:399–412.CrossRefGoogle Scholar
  60. Reguera RM, Morán M, Pérez-Pertejo Y, et al. Current status on prevention and treatment of canine leishmaniasis. Vet Parasitol. 2016;227:98–114.  https://doi.org/10.1016/j.vetpar.2016.07.011.CrossRefPubMedGoogle Scholar
  61. Reis AB, Teixeira-Carvalho A, Vale AM, et al. Isotype patterns of immunoglobulins: hallmarks for clinical status and tissue parasite density in brazilian dogs naturally infected by Leishmania (Leishmania) chagasi. Vet Immunol Immunopathol. 2006;112:102–16.  https://doi.org/10.1016/j.vetimm.2006.02.001.CrossRefPubMedGoogle Scholar
  62. Reis AB, Giunchetti RC, Carrillo E, et al. Immunity to Leishmania and the rational search for vaccines against canine leishmaniasis. Trends Parasitol. 2010;26:341–9.CrossRefGoogle Scholar
  63. Reuss SM, Dunbar MD, Calderwood Mays MB, et al. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerg Infect Dis. 2012;18:1545–7.  https://doi.org/10.3201/eid1809.120184.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.  https://doi.org/10.1016/j.pt.2009.08.003.CrossRefPubMedGoogle Scholar
  65. Rogers ME, Bates PA. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog. 2007;3:e91.  https://doi.org/10.1371/journal.ppat.0030091.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sand fly Lutzomyia longipalpis. Parasitology. 2002;124:495–507.  https://doi.org/10.1017/S0031182002001439.CrossRefPubMedGoogle Scholar
  67. Rogers ME, Corware K, Müller I, Bates PA. Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes Infect. 2010;12:875–9.  https://doi.org/10.1016/j.micinf.2010.05.014.CrossRefPubMedGoogle Scholar
  68. Rolao N, Martins MJ, Joao A, Campino L. Equine infection with Leishmania in Portugal. Parasite. 2005;12:183–6.CrossRefGoogle Scholar
  69. Sadlova J, Yeo M, Seblova V, et al. Visualisation of leishmania donovani fluorescent hybrids during early stage development in the sand fly vector. PLoS One. 2011;6(5):e19851.  https://doi.org/10.1371/journal.pone.0019851.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sanchez MA, Diaz NL, Zerpa O, et al. Organ-specific immunity in canine visceral leishmaniasis: analysis of symptomatic and asymptomatic dogs naturally infected with Leishmania chagasi. Am J Trop Med Hyg. 2004;70:618–24.PubMedGoogle Scholar
  71. Sangiorgi B, Miranda DN, Oliveira DF, et al. Natural breeding places for phlebotomine sand flies (Diptera: Psychodidae) in a semiarid region of Bahia state Brazil. J Trop Med. 2012;2012:124068.  https://doi.org/10.1155/2012/124068.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schlein Y, Jacobson RL, Messer G. Leishmania infections damage the feeding mechanism of the sand fly vector and implement parasite transmission by bite. Proc Natl Acad Sci U S A. 1992;89:9944–8.  https://doi.org/10.1073/pnas.89.20.9944.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schwartz E, Hatz C, Blum J. New world cutaneous leishmaniasis in travellers. Lancet Infect Dis. 2006;6:342–9.CrossRefGoogle Scholar
  74. Secundino N, Kimblin N, Peters NC, et al. Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cell Microbiol. 2010;12:906–18.  https://doi.org/10.1111/j.1462-5822.2010.01439.x.CrossRefPubMedPubMedCentralGoogle Scholar
  75. da Silva SM, Ribeiro VM, Ribeiro RR, et al. First report of vertical transmission of Leishmania (Leishmania) infantum in a naturally infected bitch from Brazil. Vet Parasitol. 2009;166:159–62.  https://doi.org/10.1016/j.vetpar.2009.08.011.CrossRefPubMedGoogle Scholar
  76. Silva DA, Madeira Mde F, Figueiredo FB. Geographical expansion of canine visceral leishmaniasis in Rio de Janeiro state, Brazil. Rev Inst Med Trop Sao Paulo. 2015;57:435–8.CrossRefGoogle Scholar
  77. Solano-Gallego L, Koutinas A, Miró G, et al. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet Parasitol. 2009;165:1–18.CrossRefGoogle Scholar
  78. Solano-Gallego L, Miró G, Koutinas A, et al. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors. 2011;4:86.  https://doi.org/10.1186/1756-3305-4-86.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Stierhof Y-D, Bates PA, Jacobson RL, et al. Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sand fly vectors. Eur J Cell Biol. 1999;78:675–89.  https://doi.org/10.1016/S0171-9335(99)80036-3.CrossRefPubMedGoogle Scholar
  80. Tafuri WL, Santos RDL, Arantes RME, et al. An alternative immunohistochemical method for detecting Leishmania amastigotes in paraffin-embedded canine tissues. J Immunol Methods. 2004;292:17–23.  https://doi.org/10.1016/j.jim.2004.05.009.CrossRefPubMedGoogle Scholar
  81. Takagi H, Itoh M, Islam MZ, et al. Sensitive, specific, and rapid detection of Leishmania donovani DNA by loop-mediated isothermal amplification. Am J Trop Med Hyg. 2009;81:578–82.  https://doi.org/10.4269/ajtmh.2009.09-0145.CrossRefPubMedGoogle Scholar
  82. Turchetti AP, Souza TD, Paixão TA, Santos RL. Sexual and vertical transmission of visceral leishmaniasis. J Infect Dev Ctries. 2014;8:403–7.CrossRefGoogle Scholar
  83. Verma S, Singh R, Sharma V, et al. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect Dis. 2017;17:223.  https://doi.org/10.1186/s12879-017-2318-8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Volf P, Hajmova M, Sadlova J, Votypka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol. 2004;34:1221–7.  https://doi.org/10.1016/j.ijpara.2004.07.010.CrossRefPubMedGoogle Scholar
  85. World Health Organization. Control of the leishmaniases. World Health Organ Tech Rep Ser. 2010;(949):xii–xiii, 1-186.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anabel Elisa Rodriguez
    • 1
  • José Octavio Estévez
    • 2
  • María Cecilia Nevot
    • 2
  • Alejandra Barrios
    • 3
  • Monica Florin-Christensen
    • 1
    • 4
    • 5
  1. 1.Institute of Pathobiology, Center for Research on Veterinary and Agronomic Sciences (CICVyA)National Institute of Agricultural Technology (INTA-Argentina)HurlinghamArgentina
  2. 2.Veterinaria del OestePosadasArgentina
  3. 3.Microbiology and Parasitology DepartmentSchool of Health Sciences, National University of SaltaSaltaArgentina
  4. 4.National Council of Scientific and Technological Research (CONICET)Buenos AiresArgentina
  5. 5.School of Exact, Chemical and Natural Sciences (FCEQN)University of MoronMoronArgentina

Personalised recommendations