Equine Piroplasmids

  • Massaro W. Ueti
  • Donald P. Knowles


Equine piroplasmosis (EP), caused by the tick-borne protozoan parasites Theileria equi or Babesia caballi, is an infectious disease that affects equids worldwide. The disease is of global economic importance due to morbidity, mortality, costs associated with treatment, diagnosis, and impact on the international movement of horses for commerce and competition. Infected horses remain lifelong carriers of T. equi or B. caballi, although horses appear able to occasionally eliminate B. caballi infection. Persistently infected equids are a continuous source for transmission of the protozoal pathogens by tick vectors or iatrogenic transfer. The presence of ticks capable of transmitting these pathogens on all continents increases the need for global surveillance to prevent EP dissemination. This chapter presents life cycle differences between T. equi and B. caballi, the world distribution of competent tick vectors, efficacy of drug treatment to eliminate persistent infection, acaricide treatments to lower tick burden, and improvement of diagnostic assays to prevent dissemination of protozoan parasite strains throughout the world.


Theileria equi Babesia caballi Equine piroplasmosis Tick Diagnosis 



This work was supported by USDA-ARS CRIS project number 2090-32000-039-00D.


  1. Bashiruddin JB, Camma C, et al. Molecular detection of Babesia equi and Babesia caballi in horse blood by PCR amplification of part of the 16S rRNA gene. Vet Parasitol. 1999;84(1–2):75–83.CrossRefGoogle Scholar
  2. Cunha CW, Kappmeyer LS, et al. Conformational dependence and conservation of an immunodominant epitope within the Babesia equi erythrocyte-stage surface protein equi merozoite antigen 1. Clin Diagn Lab Immunol. 2002;9(6):1301–6.PubMedPubMedCentralGoogle Scholar
  3. De Waal DT. Equine piroplasmosis: a review. Br Vet J. 1992;148(1):6–14.CrossRefGoogle Scholar
  4. De Waal DT, Van HJ, et al. An investigation into the clinical pathological changes and serological response in horses experimentally infected with Babesia equi and Babesia caballi. Onderstepoort J Vet Res. 1987;54(4):561–8.PubMedGoogle Scholar
  5. Erbsloh JK. Babesiosis in the newborn foal. J Reprod Fertil Suppl. 1975;23:725–6.Google Scholar
  6. Estrada-Pena A, Venzal JM, et al. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. J Med Entomol. 2012;49(4):794–802.CrossRefGoogle Scholar
  7. Foil LD, Coleman P, et al. Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Vet Parasitol. 2004;125(1–2):163–81.CrossRefGoogle Scholar
  8. Friedhoff KT. Piroplasmas of horses—impact on the international horse trade. Berl Munch Tierarztlc Wochenschr. 1982;95(19):368–74.Google Scholar
  9. George JE, Pound JM, et al. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology. 2004;129(Suppl):S353–66.CrossRefGoogle Scholar
  10. Grause JF, Ueti MW, et al. Efficacy of imidocarb dipropionate in eliminating Theileria equi from experimentally infected horses. Vet J. 2013;196(3):541–6.CrossRefGoogle Scholar
  11. Guerrero FD, Lovis L, et al. Acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet. 2012;21(1):1–6.CrossRefGoogle Scholar
  12. Guimaraes AM, Lima JD, et al. Sporogony and experimental transmission of Babesia equi by Boophilus microplus. Parasitol Res. 1998a;84(4):323–7.CrossRefGoogle Scholar
  13. Guimaraes AM, Lima JD, et al. Ultrastructure of sporogony in Babesia equi in salivary glands of adult female Boophilus microplus ticks. Parasitol Res. 1998b;84(1):69–74.PubMedGoogle Scholar
  14. Holbrook AA. Biology of equine piroplasmosis. J Am Vet Med Assoc. 1969;155(2):453–4.PubMedGoogle Scholar
  15. Ikadai H, Tamaki Y, et al. Inhibitory effect of monoclonal antibodies on the growth of Babesia caballi. Int J Parasitol. 1999;29(11):1785–91.CrossRefGoogle Scholar
  16. Ikadai H, Nagai A, et al. Seroepidemiologic studies on Babesia caballi and Babesia equi infections in Japan. J Vet Med Sci. 2002;64(4):325–8.CrossRefGoogle Scholar
  17. Joyner LP, Donnelly J, et al. Complement fixation tests for equine piroplasmosis (Babesia equi and B caballi) performed in the UK during 1976 to 1979. Equine Vet J. 1981;13(2):103–6.CrossRefGoogle Scholar
  18. Kappmeyer LS, Perryman LE, et al. A Babesia equi gene encodes a surface protein with homology to Theileria species. Mol Biochem Parasitol. 1993;62(1):121–4.CrossRefGoogle Scholar
  19. Kappmeyer LS, Perryman LE, et al. Detection of equine antibodies to babesia caballi by recombinant B. caballi rhoptry-associated protein 1 in a competitive-inhibition enzyme-linked immunosorbent assay. J Clin Microbiol. 1999;37(7):2285–90.PubMedPubMedCentralGoogle Scholar
  20. Kerber CE, Labruna MB, et al. Prevalence of equine Piroplasmosis and its association with tick infestation in the state of Sao Paulo, Brazil. Rev Bras Parasitol Vet. 2009;18(4):1–8.CrossRefGoogle Scholar
  21. Knowles DP Jr. Control of Babesia equi parasitemia. Parasitol Today. 1996;12(5):195–8.CrossRefGoogle Scholar
  22. Knowles DP Jr, Perryman LE, et al. Detection of equine antibody to Babesia equi merozoite proteins by a monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay. J Clin Microbiol. 1991;29(9):2056–8.PubMedPubMedCentralGoogle Scholar
  23. Knowles DP Jr, Kappmeyer LS, et al. Antibody to a recombinant merozoite protein epitope identifies horses infected with Babesia equi. J Clin Microbiol. 1992;30(12):3122–6.PubMedPubMedCentralGoogle Scholar
  24. Kuttler KL, Goff WL, et al. Serologic response of Babesia equi-infected horses as measured by complement-fixation and indirect fluorescent antibody tests. Vet Parasitol. 1988;26(3–4):199–205.CrossRefGoogle Scholar
  25. Laus F, Spaterna A, et al. Clinical investigation on Theileria equi and Babesia caballi infections in Italian donkeys. BMC Vet Res. 2015;11:100.CrossRefGoogle Scholar
  26. Mahoney DF, Wright IG, et al. The identification of Babesia equi in Australia. Aust Vet J. 1977;53(10):461–4.CrossRefGoogle Scholar
  27. Posnett ES, Ambrosio RE. DNA probes for the detection of Babesia caballi. Parasitology. 1991;102(Pt 3):357–65.CrossRefGoogle Scholar
  28. Potgieter FT, De Waal DT, et al. Transmission and diagnosis of equine babesiosis in South Africa. Mem Inst Oswaldo Cruz. 1992;87(Suppl 3):139–42.CrossRefGoogle Scholar
  29. Ramsay JD, Ueti MW, et al. Lymphocytes and macrophages are infected by Theileria equi, but T cells and B cells are not required to establish infection in vivo. PLoS One. 2013;8(10):e76996.CrossRefGoogle Scholar
  30. Rhalem A, Sahibi H, et al. Validation of a competitive enzyme-linked immunosorbent assay for diagnosing Babesia equi infections of Moroccan origin and its use in determining the seroprevalence of B. equi in Morocco. J Vet Diagn Invest. 2001;13(3):249–51.CrossRefGoogle Scholar
  31. Schein E, Rehbein G, et al. Babesia equi (Laveran 1901) 1. Development in horses and in lymphocyte culture. Tropenmed Parasitol. 1981;32(4):223–7.PubMedGoogle Scholar
  32. Schwint ON, Knowles DP, et al. Transmission of Babesia caballi by Dermacentor nitens (Acari: Ixodidae) is restricted to one generation in the absence of alimentary reinfection on a susceptible equine host. J Med Entomol. 2008;45(6):1152–5.CrossRefGoogle Scholar
  33. Schwint ON, Ueti MW, et al. Imidocarb dipropionate clears persistent Babesia caballi infection with elimination of transmission potential. Antimicrob Agents Chemother. 2009;53(10):4327–32.CrossRefGoogle Scholar
  34. Scoles GA, Ueti MW. Amblyomma cajennense is an intrastadial biological vector of Theileria equi. Parasit Vectors. 2013;6(1):306.CrossRefGoogle Scholar
  35. Scoles GA, Ueti MW. Vector ecology of equine piroplasmosis. Annu Rev Entomol. 2015;60:561–80.CrossRefGoogle Scholar
  36. Scoles GA, Hutcheson HJ, et al. Equine piroplasmosis associated with Amblyomma cajennense ticks, Texas, USA. Emerg Infect Dis. 2011;17(10):1903–5.CrossRefGoogle Scholar
  37. Short MA, Clark CK, et al. Outbreak of equine piroplasmosis in Florida. J Am Vet Med Assoc. 2012;240(5):588–95.CrossRefGoogle Scholar
  38. Stiller D, Goff WL, et al. Dermacentor variabilis and Boophilus microplus (Acari: Ixodidae): experimental vectors of Babesia equi to equids. J Med Entomol. 2002;39(4):667–70.CrossRefGoogle Scholar
  39. Taylor MA. Recent developments in ectoparasiticides. Vet J. 2001;161(3):253–68.CrossRefGoogle Scholar
  40. Taylor WM, Bryant JE, et al. Equine piroplasmosis in the United States-a review. J Am Vet Med Assoc. 1969;155(6):915–9.PubMedGoogle Scholar
  41. Ueti MW, Palmer GH, et al. Expression of equi merozoite antigen 2 during development of Babesia equi in the midgut and salivary gland of the vector tick Boophilus microplus. J Clin Microbiol. 2003;41(12):5803–9.CrossRefGoogle Scholar
  42. Ueti MW, Palmer GH, et al. Ability of the vector tick Boophilus microplus to acquire and transmit Babesia equi following feeding on chronically infected horses with low-level parasitemia. J Clin Microbiol. 2005;43(8):3755–9.CrossRefGoogle Scholar
  43. Ueti MW, Palmer GH, et al. Persistently infected horses are reservoirs for intrastadial tick-borne transmission of the apicomplexan parasite Babesia equi. Infect Immun. 2008;76(8):3525–9.CrossRefGoogle Scholar
  44. Ueti MW, Mealey RH, et al. Re-emergence of the apicomplexan Theileria equi in the United States: elimination of persistent infection and transmission risk. PLoS One. 2012;7(9):e44713.CrossRefGoogle Scholar
  45. Uilenberg G. Babesia—a historical overview. Vet Parasitol. 2006;138(1–2):3–10.CrossRefGoogle Scholar
  46. Wise LN, Kappmeyer LS, et al. Review of equine piroplasmosis. J Vet Intern Med. 2013;27(6):1334–46.CrossRefGoogle Scholar
  47. Zapf F, Schein E. The development of Babesia (Theileria) equi (Laveran, 1901) in the gut and the haemolymph of the vector ticks, Hyalomma species. Parasitol Res. 1994a;80(4):297–302.CrossRefGoogle Scholar
  48. Zapf F, Schein E. New findings in the development of Babesia (Theileria) equi (Laveran, 1901) in the salivary glands of the vector ticks, Hyalomma species. Parasitol Res. 1994b;80(7):543–8.CrossRefGoogle Scholar
  49. Zaugg JL, Lane VM. Evaluations of buparvaquone as a treatment for equine babesiosis (Babesia equi). Am J Vet Res. 1989;50(5):782–5.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of AgriculturePullmanUSA
  2. 2.Program in Vector-borne Diseases, Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanUSA
  3. 3.School for Global Animal HealthWashington State UniversityPullmanUSA

Personalised recommendations