Non-Negative Matrix Factorization with Exogenous Inputs for Modeling Financial Data

  • Steven Squires
  • Luis Montesdeoca
  • Adam Prügel-Bennett
  • Mahesan Niranjan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10635)

Abstract

Non-negative matrix factorization (NMF) is an effective dimensionality reduction technique that extracts useful latent spaces from positive value data matrices. Constraining the factors to be positive values, and via additional regularizations, sparse representations, sometimes interpretable as part-based representations have been derived in a wide range of applications. Here we propose a model suitable for the analysis of multi-variate financial time series data in which the variation in data is explained by latent subspace factors and contributions from a set of observed macro-economic variables. The macro-economic variables being external inputs, the model is termed XNMF (eXogenous inputs NMF). We derive a multiplicative update algorithm to learn the factorization, empirically demonstrate that it converges to useful solutions on real data and prove that it is theoretically guaranteed to monotonically reduce the objective function. On share prices from the FTSE 100 index time series, we show that the proposed model is effective in clustering stocks in similar trading sectors together via the latent representations learned.

Keywords

Non-negative matrix factorisation Computational finance Dimensionality reduction 

References

  1. 1.
    Weigend, A.S., Huberman, B.A., Rumelhart, D.E.: Predicting the future: a connectionist approach. Int. J. Neural Syst. 1(03), 193–209 (1990)CrossRefGoogle Scholar
  2. 2.
    Tamiz, M., Hasham, R., Jones, D.F., Hesni, B., Fargher, E.K.: A two staged goal programming model for portfolio selection. In: Tamiz, M. (eds.) Multi-Objective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 432, pp. 286–299. Springer, Heidelberg (1996). doi: 10.1007/978-3-642-87561-8_19
  3. 3.
    Omran, M.F.: Nonlinear dependence and conditional heteroscedasticity in stock returns: UK evidence. Appl. Econ. Lett. 4(10), 647–650 (1997)CrossRefGoogle Scholar
  4. 4.
    Babu, A., Reddy, S.: Exchange rate forecasting using arima, neural network and fuzzy neuron. J. Stock Forex Trading 3(4), 1–5 (2015)Google Scholar
  5. 5.
    Niranjan, M.: Sequential tracking in pricing financial options using model based and neural network approaches. In: Advances in Neural Information Processing Systems, pp. 960–966 (1997)Google Scholar
  6. 6.
    Montesdeoca, L., Niranjan, M.: Extending the feature set of a data-driven artificial neural network model of pricing financial options. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2016)Google Scholar
  7. 7.
    de Fréin, R., Drakakis, K., Rickard, S., Cichocki, A.: Analysis of financial data using non-negative matrix factorization. In: International Mathematical Forum, vol. 3, pp. 1853–1870. Journals of Hikari Ltd (2008)Google Scholar
  8. 8.
    de Fréin, R., Drakakis, K., Rickard, S.: Portfolio diversification using subspace factorizations. In: 42nd Annual Conference on Information Sciences and Systems, 2008, CISS 2008, pp. 1075–1080. IEEE (2008)Google Scholar
  9. 9.
    Wang, J.: Stock trend extraction via matrix factorization. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 516–526. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35527-1_43 CrossRefGoogle Scholar
  10. 10.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)Google Scholar
  12. 12.
    Squires, S., Prügel-Bennett, A., Niranjan, M.: Rank selection in nonnegative matrix factorization using minimum description length. Neural Comput. 29, 2164–2176 (2017)CrossRefGoogle Scholar
  13. 13.
    Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Nat. Acad. Sci. 101(12), 4164–4169 (2004)CrossRefGoogle Scholar
  14. 14.
    Devarajan, K.: Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput. Biol. 4(7), e1000029 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steven Squires
    • 1
  • Luis Montesdeoca
    • 1
  • Adam Prügel-Bennett
    • 1
  • Mahesan Niranjan
    • 1
  1. 1.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations