Recognition of Voluntary Blink and Bite Base on Single Forehead EMG

  • Jianhai Zhang
  • Wenhao Huang
  • Shaokai Zhao
  • Yanyang Li
  • Sanqing Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10635)


With the development of intelligent wearable technology, the need for a more effective and practical means of human-computer interaction is becoming increasingly urgent. In this paper, we used only one forehead Electromyogram (EMG) channel to accurately recognize at least 6 different voluntary blink and bite patterns as output interactive commands. Differential square moving average (DSMA) and square moving average (SMA) were used to distinguish blink and bite, voluntary blink and natural blink, respectively. Then, random forests classifier was employed to classify the 6 blink and bite patterns with extracted time-domain features. The accuracy of 92.60 ± 2.55 was obtained for the dataset of 10 subjects. It provides an effective human-computer interaction method with the advantages of rich commands, good real-time performance, low cost and small individual differences. The method proposed can be conveniently embedded in wearable device as an alternative of interaction.


Human-computer interaction Wearable device EMG Blink recognition Bite recognition 



This work was supported in part by the National Natural Science Foundation of China under Grant 61100102 and Grant 61473110 and Grant 61633010, in part by the International Science and Technology Cooperation Program of China under Grant 2014DFG12570.


  1. 1.
    Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectr. 90, 298–307 (2017)CrossRefGoogle Scholar
  2. 2.
    Chan, M., Esteve, D., Escriba, C., Campo, E.: A review of smart homes - present state and future challenges. Comput. Meth. Prog. Biomed. 91(1), 55–81 (2008)CrossRefGoogle Scholar
  3. 3.
    Wu, W., Hsu, C., Yang, S.: Smart wearable device design for bicycle lights direction control with speech-recognition function. In: International Symposium on Computer, Consumer and Control, Xian, pp. 53–56. IEEE (2016)Google Scholar
  4. 4.
    Lopez-Nava, I., Munoz-Melendez, A.: Wearable inertial sensors for human motion analysis: a review. IEEE Sens. J. 16(22), 7821–7834 (2016)CrossRefGoogle Scholar
  5. 5.
    Ali, B., Mehrdad, F., Rabab, K., Gary, E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32–R57 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, R., Yuan, L., Yong, Y., Hao, Z., et al.: Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 128–139 (2016)CrossRefGoogle Scholar
  7. 7.
    Vourvopoulos, A., Badia, S., Liarokapis, F.: EEG correlates of video game experience and user profile in motor-imagery-based brain-computer interaction. Vis. Comput. 33(4), 533–546 (2017)CrossRefGoogle Scholar
  8. 8.
    Vialatte, F., Maurice, M., Dauwels, J., Cichocki, A.: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog. Neurobiol. 90(4), 418–438 (2010)CrossRefGoogle Scholar
  9. 9.
    Ning, B., Li, M., Liu, T., Shen, H., Hu, L., Fu, X.: Human brain control of electric wheelchair with eye-blink electrooculogram signal. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part I. LNCS (LNAI), vol. 7506, pp. 579–588. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33509-9_58 CrossRefGoogle Scholar
  10. 10.
    Duguleana, M., Mogan, G.: Using eye blinking for EOG-based robot control. In: Camarinha-Matos, L.M., Pereira, P., Ribeiro, L. (eds.) DoCEIS 2010. IFIP AICT, vol. 314, pp. 343–350. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11628-5_37 CrossRefGoogle Scholar
  11. 11.
    Adnan, M., Muhammad, M., Syed, M., Bilal, K.: Human emotion recognition and analysis in response to audio music using brain signals. Comput. Hum. Behav. 65, 267–275 (2016)CrossRefGoogle Scholar
  12. 12.
    Abo-Zahhad, M., Ahmed, S., Abbas, S.: A novel biometric approach for human identification and verification using eye blinking signal. IEEE Signal Process. Lett. 22(7), 876–880 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhao, Z., Chen, X., Zhang, X., Yang, J., Tu, Y., Lantz, V., Wang, K.: Study on online gesture sEMG recognition. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 1257–1265. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74171-8_128 CrossRefGoogle Scholar
  14. 14.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Prinzie, A., Van, D.: Random forests for multiclass classification: random multinomial logit. Expert Syst. Appl. 34(3), 1721–1732 (2008)CrossRefGoogle Scholar
  16. 16.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jianhai Zhang
    • 1
  • Wenhao Huang
    • 1
  • Shaokai Zhao
    • 1
  • Yanyang Li
    • 1
  • Sanqing Hu
    • 1
  1. 1.College of Computer ScienceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations