A Computational Investigation of an Active Region in Brain Network Based on Stimulations with Near-Infrared Spectroscopy

  • Xu Huang
  • Raul Fernandez Rojas
  • Allan C. Madoc
  • Keng-Liang Ou
  • Sheikh Md. Rabiul Islam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10635)

Abstract

Near-infrared spectroscopy (NIRS) has been widely used in medical imaging to observe oxygenation and hemodynamic responses in the cerebral cortex. In this paper, the major target is reporting our current study about the computational investigation of functional near infrared spectroscopy (fNIRS) in the somatosensory region with noxious stimulations. Based on signal processing technologies within communication network, the related technologies are applied, including cross correlation analysis, optic flow, and wavelet. The visual analysis exposed pain-related activations in the primary somatosensory cortex (S1) after stimulation which is consistent with similar studies, but the cross correlation results strongly evidenced dominant channels on both cerebral hemispheres. Our investigation also demonstrated that the spatial distribution of the cortical activity origin can be described by the hemodynamic responses in the cerebral cortex after evoked stimulation using near infrared spectroscopy. The current outcomes of this computational investigation explore that it is good potential to be employed to deal with pain assessment in human subjects.

Keywords

Brain-computational investigation Brain-machine interface Brainwave feedback 

References

  1. 1.
    Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified function near-infrared spectroscopy system. J. Neural Eng. 4, 208–219 (2007)CrossRefGoogle Scholar
  2. 2.
    Boecker, M., Buecheler, M.M., Schroeter, M.L., Gauggel, S.: Prefrontal brain activation during stop-signal response inhibition: an event-related functional near-Infrared Spectroscopy study. Behav. Brain Res. 176, 259–266 (2007)CrossRefGoogle Scholar
  3. 3.
    Bartocci, M., Bergqvist, L.L., Lagercrantz, H., Anand, K.: Pain activates cortical areas in the preterm newborn brain. Pain 122, 109–117 (2006)CrossRefGoogle Scholar
  4. 4.
    Fernandez-Rojas, R., Huang, X., Ou, K.L.: Spatiotemporal analysis of brain activity response using near infrared spectroscopy. Int. J. Pharm. Med. Biol. Sci. 5, 1–6 (2016)Google Scholar
  5. 5.
    Kobayashi, M., Otsuka, J.Y., Nakato, E., Kanazawa, S., Yamaguchi, M.K., Kakigi, R.: Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy. Front. Hum. Neurosci. 5, 23–30 (2011)CrossRefGoogle Scholar
  6. 6.
    Honda, Y., Nakato, E., Otsuka, Y., Kanazawa, S., Kojima, S., Yamaguchi, M.K., et al.: How do infants perceive scrambled face? A near-infrared spectroscopic study. Brain Res. 1308, 137–146 (2010)CrossRefGoogle Scholar
  7. 7.
    Gervain, J., Macagno, F., Cogoi, S., Peña, M., Mehler, J.: The neonate brain detects speech structure. Proc. Natl. Acad. Sci. U.S.A. 105, 14222–14227 (2008)CrossRefGoogle Scholar
  8. 8.
    Song, X., Pogue, B.W., Jiang, S., Doyley, M.M., Dehghani, H., Tosteson, T.D., et al.: Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 43, 1053–1062 (2004)CrossRefGoogle Scholar
  9. 9.
    Kovelman, I., Shalinsky, M., Berens, M.S., Petitto, L.A.: Shining new light on the brain’s “bilingual signature: a functional Near Infrared Spectroscopy investigation of semantic processing. Neuroimage 39, 1457–1471 (2008)CrossRefGoogle Scholar
  10. 10.
    Verner, M., Herrmann, M.J., Troche, S.J., Roebers, C.M., Rammsayer, T.H.: Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach. Front. Hum. Neurosci. 7, 47–51 (2013)CrossRefGoogle Scholar
  11. 11.
    Hofbauer, R.K., Rainville, P., Duncan, G.H., Bushnell, M.C.: Cortical representation of the sensory dimension of pain. J. Neurophysiol. 86, 402–411 (2001)Google Scholar
  12. 12.
    Bushnell, M., Duncan, G., Hofbauer, R., Ha, B., Chen, J.I., Carrier, B.: Pain perception: is there a role for primary somatosensory cortex? Proc. Natl. Acad. Sci. U.S.A. 96, 7705–7709 (1999)CrossRefGoogle Scholar
  13. 13.
    Homan, R.W., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66, 376–382 (1987)CrossRefGoogle Scholar
  14. 14.
    Fernandez Rojas, R., Huang, X., Ou, K.L., Tran, D., Islam, S.M.R.: Analysis of pain hemodynamic response using near-infrared spectroscopy (NIRS). Int. J. Mult. Appl. 7, 31–42 (2015)Google Scholar
  15. 15.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Technical Symposium East, pp. 319–331 (1981)Google Scholar
  16. 16.
    Horn, B.: Robot Vision. MIT press, Cambridge (1986)Google Scholar
  17. 17.
    Islam, Sheikh Md.Rabiul, Huang, X., Ou, K.L., Rojas, R.F., Cui, H.: Novel information processing for image de-noising based on sparse basis. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 443–451. Springer, Cham (2015). doi: 10.1007/978-3-319-26555-1_50 CrossRefGoogle Scholar
  18. 18.
    Islam, Sheikh Md.Rabiul, Huang, X., Le, K.: A novel adaptive shrinkage threshold on shearlet transform for image denoising. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8836, pp. 127–134. Springer, Cham (2014). doi: 10.1007/978-3-319-12643-2_16 Google Scholar
  19. 19.
    Bushnell, M., Duncan, G., Hofbauer, R., Ha, B., Chen, J.I., Carrier, B.: Pain perception: is there a role for primary somatosensory cortex? Proc. Nat. Acad. Sci. 96, 7705–7709 (1999)CrossRefGoogle Scholar
  20. 20.
    Sutherland, M.T., Tang, A.C.: Reliable detection of blateral activation in human primary somatosensory cortex by unilateral median nerve stimulation. Neuroimage 33, 1042–1054 (2006)CrossRefGoogle Scholar
  21. 21.
    Coghill, R.C., Sang, C.N., Maisog, J.M., Iadarola, M.J.: Pain intensity processing within the human brain: a bilateral, distributed mechanism. J. Neurophysiol. 82, 1934–1943 (1999)Google Scholar
  22. 22.
    Zarate, O., McEvoy, J.P.: Introducing Quantum Theory: A Graphic Guide. Icon Books Ltd, London, 06 September 2007. ISBN: 9781840468502Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xu Huang
    • 1
  • Raul Fernandez Rojas
    • 1
  • Allan C. Madoc
    • 2
  • Keng-Liang Ou
    • 3
  • Sheikh Md. Rabiul Islam
    • 4
  1. 1.Faculty of Education, Science, Technology and MathematicsUniversity of CanberraCanberraAustralia
  2. 2.Technology and E-Commerce, Institutional Banking MarketsCommonwealth BankSydneyAustralia
  3. 3.Taipei Medical UniversityTaipeiTaiwan
  4. 4.Department of Electronics and Communication EngineeringKhulna University of Engineering and TechnologyKhulnaBangladesh

Personalised recommendations