Skip to main content

The Effect of Task Similarity on Deep Transfer Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10635))

Included in the following conference series:

Abstract

In recent years, with deep learning achieving a great success, deep transfer learning gradually becomes a new issue. Fine-tuning as a simple transfer learning method can be used to help train deep network and improve the performance of network. In our paper, we use two fine-tuning strategies on deep convolutional neural network and compare their results. There are many influencing factors, such as the depth and width of the network, the amount of data, the similarity of the source and target domain, and so on. Then we keep the network structure and other related factors consistent and use the fine fine-tuning strategy to find the effect of cross-domain factor and similarity of task. Specifically, we use source network and target test data to calculate the similarity. The results of experiments show that when we use fine-tune strategy, using different dataset in source and target domain would affect the target task a lot. Besides the similarity of tasks has direction, and to some extent the similarity would reflect the increment of performance of target task when the source and target task use the same dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

  2. 2.

    http://www.jdl.ac.cn/peal/.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) NIPS 2012, pp. 1097–1105 (2012)

    Google Scholar 

  2. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE CVPR 2015 (2015)

    Google Scholar 

  3. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 1345–1359 (2010)

    Google Scholar 

  4. Ge, W., Yu, Y.: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning. arXiv preprint arXiv:1702.08690 (2017)

  5. Xu, Z., Huang, S., Zhang, Y., Tao, D.: Webly-supervised fine-grained visual categorization via deep domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. (2016)

    Google Scholar 

  6. Long, M., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636 (2016)

  7. Ding, Z., Nasrabadi, N.M., Fu, Y.: Task-driven deep transfer learning for image classification. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2414–2418. IEEE (2016)

    Google Scholar 

  8. Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., Carlsson, S.: Factors of transferability for a generic convNet representation. IEEE Trans. Pattern Anal. Mach. Intell., 1790–1802 (2016)

    Google Scholar 

  9. A visual proof that neural nets can compute any function, neuralnetworksanddeeplearning.com/chap4.html. Accessed 20 May 2017

  10. CS231n Convolutional Neural Networks for Visual Recognition, cs231.github.io/transfer-learning/. Accessed 15 June 2017

Download references

Acknowledgments

The work is funded by the National Natural Science Foundation of China (No. 61170155), Shanghai Innovation Action Plan Project (No. 16511101200) and the Open Project Program of the National Laboratory of Pattern Recognition (No. 201600017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, W., Fang, Y., Ma, Z. (2017). The Effect of Task Similarity on Deep Transfer Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10635. Springer, Cham. https://doi.org/10.1007/978-3-319-70096-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70096-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70095-3

  • Online ISBN: 978-3-319-70096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics