Advertisement

The Analysis and Classify of Sleep Stage Using Deep Learning Network from Single-Channel EEG Signal

  • Songyun Xie
  • Yabing Li
  • Xinzhou Xie
  • Wei Wang
  • Xu Duan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)

Abstract

Electroencephalogram (EEG)-based sleep stage analysis is helpful for diagnosis of sleep disorder. However, the accuracy of previous EEG-based method is still unsatisfactory. In order to improve the classification performance, we proposed an EEG-based automatic sleep stage classification method, which combined convolutional neural network (CNN) and time-frequency decomposition. The time-frequency image (TFI) of EEG signals is obtained by using the smoothed short-time Fourier transform. The features derived from the TFI have been used as an input feature of a CNN for sleep stage classification. The proposed method achieves the best accuracy of 88.83%. The experimental results demonstrate that deep learning method provides better classification performance compared to other methods.

Keywords

Convolutional neural networks (CNN) Time-frequency decomposition Sleep analysis 

Notes

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (61273250), the Fundamental Research Funds for the Central Universities (No. 3102017jc11002) and the graduate starting seed fund of Northwestern Polytechnical University (Z2017141).

References

  1. 1.
    Pan, S.T., Kuo, C.E., Zeng, J.H., Liang, S.F.: A transition-constrained discrete hidden markov model for automatic sleep staging. BioMed. Eng. Online 11(1), 1–19 (2012)CrossRefGoogle Scholar
  2. 2.
    Rechtschaffen, A.Q., Kales, A.A.: A manual of standardized terminology techniques and scoring system for sleep stages in human subjects. Psychiatry Clin. Neurosci. 26(6), 644 (1968)Google Scholar
  3. 3.
    Schulz, H.: Phasic or transient? Comment on the terminology of the AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. JCSM Official Publ. Am. Acad. Sleep Med. 3(7), 752 (2007)Google Scholar
  4. 4.
    Aboalayon, K.A.I., Faezipour, M., Almuhammadi, W.S., Moslehpour, S.: Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy 18(9), 272–303 (2016)CrossRefGoogle Scholar
  5. 5.
    Herrera, L.J., Mora, A.M., Fernandes, C., Migotina, D., Guillen, A., Rosa, A.C.: Symbolic representation of the EEG for sleep stage classification. In: International Conference on Intelligent Systems Design and Applications 2011, vol. 60, pp. 253–258. IEEE, Cordoba, Spain (2011)Google Scholar
  6. 6.
    Ronzhina, M., Janoušek, O., Kolářová, J., Nováková, M., Honzík, P., Provazník, I.: Sleep scoring using artificial neural networks. Sleep Med. Rev. 16(3), 251–263 (2012)CrossRefGoogle Scholar
  7. 7.
    Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 108(1), 10–19 (2012)CrossRefGoogle Scholar
  8. 8.
    Hassan, A.R., Bashar, S.K., Bhuiyan, M.I.H.: Automatic classification of sleep stages from single-channel electroencephalogram. In: India Conference 2015, pp. 1–6. IEEE, New Delhi, India (2015)Google Scholar
  9. 9.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2014)CrossRefGoogle Scholar
  10. 10.
    Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)CrossRefGoogle Scholar
  11. 11.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)CrossRefGoogle Scholar
  12. 12.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  13. 13.
    Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A.C., Oberye, J.J.L.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000)CrossRefGoogle Scholar
  14. 14.
    Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  15. 15.
    Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Conference on Computer Vision and Pattern Recognition 2014, pp. 1733–1740. IEEE, Columbus, OH, USA (2014)Google Scholar
  16. 16.
    Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.E., Eichenlaub, J.B., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods 250(30), 94–105 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Songyun Xie
    • 1
  • Yabing Li
    • 1
  • Xinzhou Xie
    • 1
  • Wei Wang
    • 1
  • Xu Duan
    • 1
  1. 1.School of Electronics and InformationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations