Deep Learning Features for Lung Adenocarcinoma Classification with Tissue Pathology Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)

Abstract

This paper presents the approach for lung adenocarcinoma diagnosis, using deep convolutional neural networks (CNN) to learn the features from the tissue pathology images. Our multi-stage procedure can detect the lung cancer of adenocarcinoma, in which the preprocessing consists of image enhancement and class imbalance treatment. Then Gradient-weighted Class Activation Mapping (Grad-CAM) and Guided-Backpropagation visualization techniques are employed to produce the visual explanations for decisions from our CNN model. Learned features and details for the specific areas have been generated through the model. Data is collected from 22 different patients with 270 lesion images and 24 normal ones. Experimental result on this data set has achieved F1-score with 0.963. Moreover, the study is not only to pursue precise classification on the tissue pathology images of lung adenocarcinoma, but also learn the specific areas in images which should be more concerned by doctors.

Keywords

Deep learning Tissue pathology analysis Visualization 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672276) and Natural Science Foundation of Jiangsu, China (BK20161406).

References

  1. 1.
    Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. (2017)Google Scholar
  2. 2.
    Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sanchez, C.I.: A survey on deep learning in medical image analysis. arxiv preprint arXiv:1702.05747 (2017)
  3. 3.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  4. 4.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arxiv preprint arXiv:1409.1556 (2014)
  5. 5.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  6. 6.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi: 10.1007/978-3-319-10590-1_53 Google Scholar
  7. 7.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)Google Scholar
  8. 8.
    Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Gradcam: Why did you say that? visual explanations from deep networks via gradient based localization. arxiv preprint. arXiv:1610.02391 (2016)
  9. 9.
    Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Academic Press Professional Inc., Cambridge (1994)CrossRefGoogle Scholar
  10. 10.
    Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arxiv preprint arXiv:1412.6806 (2014)
  11. 11.
    Kawahara, J., Hamarneh, G.: Multi-resolution-Tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). doi: 10.1007/978-3-319-47157-0_20 CrossRefGoogle Scholar
  12. 12.
    Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). doi: 10.1007/978-3-319-19992-4_46 CrossRefGoogle Scholar
  13. 13.
    de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., Isgum, I.: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. In: Medical Imaging 2016: Image Processing, vol. 9784 (2016)Google Scholar
  14. 14.
    Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 17–21. IEEE (2015)Google Scholar
  15. 15.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  16. 16.
    Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Novel Software Technology, Department of Computer Science and TechnologyNanjing UniversityNanjingChina
  2. 2.Beijing Computing CenterBeijingChina

Personalised recommendations