Advertisement

Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation

  • Zhongwei Feng
  • Jie Yang
  • Lixiu Yao
  • Yu Qiao
  • Qi Yu
  • Xun Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)

Abstract

This paper presents Deep Retinal Image Segmentation, a unified framework of retinal image analysis that provides both optic disc and exudates segmentation. The paper presents a new formulation of fully Convolutional Neural Networks (FCNs) that allows accurate segmentation of the retinal images. A major modification in these retinal image segmentation tasks are to improve and speed-up the FCNs training by adding short and long skip connections in standard FCNs architecture with class-balancing loss. The proposed method is experimented on the DRIONS-DB dataset for optic disc segmentation and the privately dataset for exudates segmentation, which achieves strong performance and significantly outperforms the-state-of-the-art. It achieves 93.12% sensitivity (Sen), 99.56% specificity (Spe), 89.90% Positive predictive value (PPV) and 90.93% F-score for optic disc segmentation while 81.35% Sen, 98.76% Spe, 81.64% PPV and 81.50% F-score for exudates segmentation respectively.

Keywords

Optic disc segmentation Exudates segmentation Convolutional neural network Skip connections Class-balancing loss 

Notes

Acknowledgments

This research is partly supported by NSFC, China (No: 81600776), Committee of Science and Technology, Shanghai, China (No: 16411962100) and (No. 17JC1403000)

References

  1. 1.
    Youssif, A.A.H.A.R., Ghalwash, A.Z., Ghoneim, A.A.S.A.R.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008)CrossRefGoogle Scholar
  2. 2.
    Walter, T., Klein, J.-C.: Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. In: Crespo, J., Maojo, V., Martin, F. (eds.) ISMDA 2001. LNCS, vol. 2199, pp. 282–287. Springer, Heidelberg (2001). doi: 10.1007/3-540-45497-7_43 CrossRefGoogle Scholar
  3. 3.
    Morales, S., Naranjo, V., Angulo, J., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)CrossRefGoogle Scholar
  4. 4.
    Yin, F., Liu, J., Wong, D.W.K., Tan, N.M., Cheung, C., Baskaran, M., Aung, T., Wong, T.Y.: Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2012)Google Scholar
  5. 5.
    Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.M., Tao, D., Cheng, C.Y., Aung, T., Wong, T.Y.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  6. 6.
    Lim, G., Cheng, Y., Hsu, W., Lee, M.L.: Integrated optic disc and cup segmentation with deep learning. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 162–169. IEEE (2015)Google Scholar
  7. 7.
    Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_17 CrossRefGoogle Scholar
  8. 8.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  9. 9.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556
  10. 10.
    Harangi, B., Lazar, I., Hajdu, A.: Automatic exudate detection using active contour model and regionwise classification. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5951–5954. IEEE (2012)Google Scholar
  11. 11.
    Ruba, T., Ramalakshmi, K.: Identification and segmentation of exudates using SVM classifier. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–6. IEEE (2015)Google Scholar
  12. 12.
    Ardiyanto, I., Nugroho, H.A., Buana, R.L.B.: Maximum entropy principle for exudates segmentation in retinal fundus images. In: 2016 International Conference on Information & Communication Technology and Systems (ICTS), pp. 119–123. IEEE (2016)Google Scholar
  13. 13.
    Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)CrossRefGoogle Scholar
  14. 14.
    Perdomo, O., Arevalo, J., Gonzalez, F.A.: Convolutional network to detect exudates in eye fundus images of diabetic subjects. In: 12th International Symposium on Medical Information Processing and Analysis, p. 101600T. International Society for Optics and Photonics (2017)Google Scholar
  15. 15.
    Lenet, B., Komorowski, R., Wu, X.Y., Huang, J., Grad, H., Lawrence, H., Friedman, S.: Antimicrobial substantivity of bovine root dentin exposed to different chlorhexidine delivery vehicles. J. Endod. 26(11), 652–655 (2000)CrossRefGoogle Scholar
  16. 16.
    Carmona, E.J., Rincón, M., Garcia-Feijoó, J., Martínez-de-la Casa, J.M.: Identification of the optic nerve head with genetic algorithms. Artifi. Intell. Med. 43(3), 243–259 (2008)CrossRefGoogle Scholar
  17. 17.
    Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  19. 19.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2016)CrossRefGoogle Scholar
  20. 20.
    Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)Google Scholar
  21. 21.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  22. 22.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint (2015). arXiv:1502.03167
  23. 23.
    Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of IEEE International Conference on Computer Vision (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhongwei Feng
    • 1
  • Jie Yang
    • 1
  • Lixiu Yao
    • 1
  • Yu Qiao
    • 1
  • Qi Yu
    • 2
  • Xun Xu
    • 2
  1. 1.Institute of Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations