Real-Time Prediction of the Unobserved States in Dopamine Neurons on a Reconfigurable FPGA Platform

  • Shuangming Yang
  • Jiang Wang
  • Bin Deng
  • Xile Wei
  • Lihui Cai
  • Huiyan Li
  • Ruofan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)


Real-time prediction of dynamical characteristics of Dopamine (DA) neurons, including properties in ion channels and membrane potentials, is meaningful and critical for the investigation of the dynamical mechanisms of DA cells and the related psychiatric disorders. However, obtaining the unobserved states of DA neurons is significantly challenging. In this paper, we present a real-time prediction system for DA unobserved states on a reconfigurable field-programmable gate array (FPGA). In the presented system, the unscented Kalman filter (UKF) is implemented into a DA neuron model for dynamics prediction. We present a modular structure to implement the prediction algorithm and a digital topology to compute the roots of matrices in the UKF implementation. Implementation results show that the proposed system provides the real-time computational ability to predict the DA unobserved states with high precision. Although the presented system is aimed at the state prediction of DA cells, it can also be applied into the dynamic-clamping technique in the electrophysiological experiments, the brain-machine interfaces and the neural control engineering works.


Dynamical prediction Field-programmable gate array (FPGA) Dopamine neuron Real-time 



This work was supported in part by the National Natural Science Foundation of China under Grant 61374182, in part by the National Natural Science Foundation of China under Grant 61601331, and in part by the National Natural Science Foundation of China under Grant 61471265.


  1. 1.
    Wise, R.A.: Dopamine, learning and motivation. Nat. Rev. Neurosci. 5(6), 483–494 (2004)CrossRefGoogle Scholar
  2. 2.
    Braver, T.S., Barch, D.M., Cohen, J.D.: Cognition and control in Schizophrenia: a computational model of dopamine and prefrontal function. Biol. Psychiatry 46(3), 312–328 (1999)CrossRefGoogle Scholar
  3. 3.
    Iversen, S.D., Iversen, L.L.: Dopamine: 50 years in perspective. Trends Neurosci. 30(5), 188–193 (2007)CrossRefGoogle Scholar
  4. 4.
    Schultz, W.: Behavioral dopamine signals. Trends Neurosci. 30(5), 203–210 (2007)CrossRefGoogle Scholar
  5. 5.
    Grace, A.A., Bunney, B.S.: The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4(11), 2877–2890 (1984)Google Scholar
  6. 6.
    Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G., Miller, R.: Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2), 475–492 (2002)CrossRefGoogle Scholar
  7. 7.
    Grace, A.A.: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of Schizophrenia. Neuroscience 41(1), 1–24 (1991)CrossRefGoogle Scholar
  8. 8.
    Nestler, E.J., Carlezon, W.A.: The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59(12), 1151–1159 (2006)CrossRefGoogle Scholar
  9. 9.
    Morozova, E.O., Zakharov, D., Gutkin, B.S., Lapish, C.C., Kuznetsov, A.: Dopamine neurons change the type of excitability in response to stimuli. PLoS Comput. Biol. 12(12), e1005233 (2016)CrossRefGoogle Scholar
  10. 10.
    Guzman, J.N., Sánchez-Padilla, J., Chan, C.S., Surmeier, D.J.: Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29(35), 11011–11019 (2009)CrossRefGoogle Scholar
  11. 11.
    Khaliq, Z.M., Bean, B.P.: Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30(21), 7401–7413 (2010)CrossRefGoogle Scholar
  12. 12.
    Yang, S., Deng, B., Wang, J., Li, H., Liu, C., Fietkiewicz, C., Loparo, K.A.: Efficient implementation of a real-time estimation system for thalamocortical hidden Parkinsonian properties. Sci. Rep. 7, 40152 (2017)CrossRefGoogle Scholar
  13. 13.
    Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)CrossRefGoogle Scholar
  14. 14.
    Yang, S., Wang, J., Li, S., Deng, B., Wei, X., Yu, H., Li, H.: Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis. Neural Netw. 71, 62–75 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, S., Wang, J., Li, S., Li, H., Wei, X., Yu, H., Deng, B.: Digital implementations of thalamocortical neuron models and its application in thalamocortical control using FPGA for Parkinson׳s disease. Neurocomputing 177, 274–289 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shuangming Yang
    • 1
  • Jiang Wang
    • 1
  • Bin Deng
    • 1
  • Xile Wei
    • 1
  • Lihui Cai
    • 1
  • Huiyan Li
    • 2
  • Ruofan Wang
    • 3
  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.School of Automation and Electrical EngineeringTianjin University of Technology and EducationsTianjinChina
  3. 3.School of Information Technology EngineeringTianjin University of Technology and EducationsTianjinChina

Personalised recommendations