Skip to main content

Waveform Classification by Memristive Reservoir Computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Abstract

Reservoir computing is one of the computational frameworks based on recurrent neural networks for learning sequential data. We study the memristive reservoir computing where a network of memristors, instead of recurrent neural networks, provides a nonlinear mapping from input sequential signals to high-dimensional spatiotemporal dynamics. First we formulate the circuit equations of the memristive networks and describe the simulation methods. Then we use the memristive reservoir computing for solving a waveform classification problem. We demonstrate how the classification ability depends on the number of reservoir outputs and the variability of the memristive elements. Our methods are useful for finding a better architecture of the memristive reservoir under the inevitable element variability when implemented with nano/micro-scale devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

    Google Scholar 

  2. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  3. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical report 148, 34 (2001)

    Google Scholar 

  4. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach. GMD-Forschungszentrum Informationstechnik (2002)

    Google Scholar 

  5. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  6. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  7. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  8. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  9. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  10. Chang, T., Yang, Y., Lu, W.: Building neuromorphic circuits with memristive devices. IEEE Circ. Syst. Mag. 13(2), 56–73 (2013)

    Article  Google Scholar 

  11. Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 226–232 (2012)

    Google Scholar 

  12. Bürger, J., Teuscher, C.: Variation-tolerant computing with memristive reservoirs. In: Proceedings of the 2013 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 1–6. IEEE Press (2013)

    Google Scholar 

  13. Bürger, J., Goudarzi, A., Stefanovic, D., Teuscher, C.: Hierarchical composition of memristive networks for real-time computing. In: 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 33–38. IEEE (2015)

    Google Scholar 

  14. Burger, J., Goudarzi, A., Stefanovic, D., Teuscher, C.: Computational capacity and energy consumption of complex resistive switch networks. AIMS Mater. Sci. 2(4), 530–545 (2015)

    Article  Google Scholar 

  15. Merkel, C., Saleh, Q., Donahue, C., Kudithipudi, D.: Memristive reservoir computing architecture for epileptic seizure detection. Procedia Comput. Sci. 41, 249–254 (2014)

    Article  Google Scholar 

  16. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J.K.: Emergent criticality in complex turing B-type atomic switch networks. Adv. Mater. 24(2), 286–293 (2012)

    Article  Google Scholar 

  17. Sillin, H.O., Aguilera, R., Shieh, H.H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)

    Article  Google Scholar 

  18. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Aguilera, R., Shieh, H.-H., Martin-Olmos, C., Sandouk, E.J., Aono, M., Gimzewski, J.K.: Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks. In: Adamatzky, A., Chua, L. (eds.) Memristor Networks, pp. 173–209. Springer, Cham (2014). doi:10.1007/978-3-319-02630-5_10

    Chapter  Google Scholar 

  19. Tanaka, G., Nakane, R., Yamane, T., Nakano, D., Takeda, S., Nakagawa, S., Hirose, A.: Exploiting heterogeneous units for reservoir computing with simple architecture. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 187–194. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_20

    Chapter  Google Scholar 

  20. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661 (2009)

    Article  MATH  Google Scholar 

  21. McDonald, N.R., Pino, R.E., Rozwood, P.J., Wysocki, B.T.: Analysis of dynamic linear and non-linear memristor device models for emerging neuromorphic computing hardware design. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)

    Google Scholar 

  22. Fei, W., Yu, H., Zhang, W., Yeo, K.S.: Design exploration of hybrid CMOS and memristor circuit by new modified nodal analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(6), 1012–1025 (2012)

    Article  Google Scholar 

  23. MATLAB: version 9.0 (R2016a). The MathWorks Inc., Natick, Massachusetts (2016)

    Google Scholar 

  24. Takeda, S., Nakano, D., Yamane, T., Tanaka, G., Nakane, R., Hirose, A., Nakagawa, S.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). doi:10.1007/978-3-319-46687-3_24

    Chapter  Google Scholar 

  25. Katayama, Y., Yamane, T., Nakano, D., Nakane, R., Tanaka, G.: Wave-based neuromorphic computing framework for brain-like energy efficiency and integration. IEEE Trans. Nanotechnol. 15(5), 762–769 (2016)

    Article  Google Scholar 

  26. Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Cham (2015). doi:10.1007/978-3-319-26555-1_23

    Chapter  Google Scholar 

  27. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 22(1), 131–144 (2011)

    Article  Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Number 16K00326 (GT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouhei Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tanaka, G. et al. (2017). Waveform Classification by Memristive Reservoir Computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics