A Swarm Optimization-Based Kmedoids Clustering Technique for Extracting Melanoma Cancer Features

  • Amin Khatami
  • Saeed Mirghasemi
  • Abbas Khosravi
  • Chee Peng Lim
  • Houshyar Asadi
  • Saeid Nahavandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)

Abstract

Melanoma is a dangerous type of skin cancers. It is alarming to see the increase of this noxious disease in modern societies, however, it can be cured by surgical excision if it is detected early. In this paper, a swarm-based clustering technique for detecting melanoma is developed. Meaningful colour features from images are extracted, and a new objective function is introduced by applying an efficient and fast linear transformation to detect Melanoma. Specifically, the proposed technique consists of three main phases. The first phase is a pre-processing stage to organize data into proper attributes, while the subsequent two phases comprise iterative swarm optimisation procedures. The iterative swarm optimisation procedures involve a linear transformation to convert the existing colour components into a new colour space, formulation of the Kmedoids objective function, and error minimisation of the particle swarm optimisation (PSO) solutions. The Otsu threshold technique is utilised to provide binary images. The proposed technique is efficient and effective due to its linearity and simplicity.

Keywords

Melanoma skin cancer Kmedoids clustering PSO Otsu threshold technique Colour space 

References

  1. 1.
    Babaie, M., Kalra, S., Sriram, A., Mitcheltree, C., Zhu, S., Khatami, A., Rahnamayan, S., Tizhoosh, H.R.: Classification and retrieval of digital pathology scans: a new dataset. arXiv preprint arXiv:1705.07522 (2017)
  2. 2.
    Cascinelli, N., Ferrario, M., Bufalino, R., Zurrida, S., Galimberti, V., Mascheroni, L., Bartoli, C., Clemente, C.: Results obtained by using a computerized image analysis system designed as an aid to diagnosis of cutaneous melanoma. Melanoma Res. 2(3), 163–170 (1992)CrossRefGoogle Scholar
  3. 3.
    Celebi, M.E., Aslandogan, Y.A., Bergstresser, P.R.: Unsupervised border detection of skin lesion images. In: International Conference on Information Technology: Coding and Computing, ITCC 2005, vol. 2, pp. 123–128. IEEE (2005)Google Scholar
  4. 4.
    Crisp, D.J., Tao, T.C.: Fast region merging algorithms for image segmentation. In: The 5th Asian Conference on Computer Vision (ACCV2002), Melbourne, Australia, pp. 23–25 (2002)Google Scholar
  5. 5.
    Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)CrossRefGoogle Scholar
  6. 6.
    Faziloglu, Y., Stanley, R.J., Moss, R.H., Van Stoecker, W., McLean, R.P.: Colour histogram analysis for melanoma discrimination in clinical images. Skin Res. Technol. 9(2), 147–156 (2003)CrossRefGoogle Scholar
  7. 7.
    Ganster, H., Pinz, A., Röhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)CrossRefGoogle Scholar
  8. 8.
    Kaufman, L., Rousseeuw, P.J.: Partitioning Around Medoids (Program PAM). Finding Groups in Data: an Introduction to Cluster Analysis, pp. 68–125 (1990)Google Scholar
  9. 9.
    Khatami, A., Babaie, M., Khosravi, A., Tizhoosh, H., Salaken, S.M., Nahavandi, S.: A deep-structural medical image classification for a radon-based image retrieval. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)Google Scholar
  10. 10.
    Khatami, A., Khosravi, A., Lim, C.P., Nahavandi, S.: A wavelet deep belief network-based classifier for medical images. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 467–474. Springer, Cham (2016). doi: 10.1007/978-3-319-46675-0_51 CrossRefGoogle Scholar
  11. 11.
    Khatami, A., Khosravi, A., Nguyen, T., Lim, C.P., Nahavandi, S.: Medical image analysis using wavelet transform and deep belief networks. Expert Syst. Appl. (2017)Google Scholar
  12. 12.
    Khatami, A., Mirghasemi, S., Khosravi, A., Lim, C.P., Nahavandi, S.: A new pso-based approach to fire flame detection using k-medoids clustering. Expert Syst. Appl. 68, 69–80 (2017)CrossRefGoogle Scholar
  13. 13.
    Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: An efficient hybrid algorithm for fire flame detection. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2015)Google Scholar
  14. 14.
    Khatami, A., Mirghasemi, S., Khosravi, A., Nahavandi, S.: A new color space based on k-medoids clustering for fire detection. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2755–2760. IEEE (2015)Google Scholar
  15. 15.
    Maglogiannis, I., Zafiropoulos, E., Kyranoudis, C.: Intelligent segmentation and classification of pigmented skin lesions in dermatological images. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS, vol. 3955, pp. 214–223. Springer, Heidelberg (2006). doi: 10.1007/11752912_23 CrossRefGoogle Scholar
  16. 16.
    Siascope, T., Consensus, E., Expert, M., Solarscan, T., Ogorzaek, M., Nowak, L., Surwka, G., Alekseenko, A.: Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University Dermatology Clinic, Collegium Medicum Poland (2005)Google Scholar
  17. 17.
    Yang, J., Fu, Z., Tan, T., Hu, W.: Skin color detection using multiple cues. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, pp. 632–635. IEEE (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amin Khatami
    • 1
  • Saeed Mirghasemi
    • 2
  • Abbas Khosravi
    • 1
  • Chee Peng Lim
    • 1
  • Houshyar Asadi
    • 1
  • Saeid Nahavandi
    • 1
  1. 1.Institute for Intelligent Systems Research and InnovationDeakin UniversityGeelongAustralia
  2. 2.School of Engineering and Computer ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations