A Portable System of Visual Fatigue Evaluation for Stereoscopic Display

  • Yue Bai
  • Jun-Dong Cho
  • Ghulam Hussain
  • Song-Yun Xie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)

Abstract

Stereoscopic display is contributing to realistic three dimensional (3D) effect which has been widely prevalent and successfully commercialized. However, visual fatigue is still an unsolved issue for these applications and has negative effects on viewers. In this paper, we proposed a method based on analysis of the production theory of 3D display and measurement of biological signals to evaluate visual fatigue. Given that two types of methods have a complementary relationship, we designed a Fuzzy Fusion of Visual Fatigue (FFVF) model using vergence-accommodation conflict (VAC) and electroencephalogram (EEG) signal. By utilizing the fuzzy theory as a fusion method to multiple features, our proposed FFVF model shows a high Pearson correlation value of 0.9676 with questionnaire results while maintaining high stability. This kind of portable human-friendly 3D viewing evaluation technology can be widely deployed.

Keywords

EEG Fuzzy theory Visual fatigue Vergence-accommodation conflict (VAC) 

Notes

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (61273250), the Fundamental Research Funds for the Central Universities (No. 3102017jc11002).

References

  1. 1.
    Park, M., Mun, S.: Overview of measurement methods for factors affecting the human visual system in 3D displays. J. Disp. Technol., 1 (2015)Google Scholar
  2. 2.
    Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S.: The zone of comfort: predicting visual discomfort with stereo displays. J. Vis. 11(8), 74–76 (2011)CrossRefGoogle Scholar
  3. 3.
    Jeong, H.G., Ko, Y.H., Han, C., Oh, S.Y., Park, K.W., Kim, T.: The impact of 3D and 2D TV watching on neurophysiological responses and cognitive functioning in adults. Eur. J. Public Health 25(6), 1047–1052 (2015)CrossRefGoogle Scholar
  4. 4.
    Wenzel, M.A., Kraft, R., Blankertz, B.: EEG-based usability assessment of 3D shutter glasses. J. Neural Eng. 13(1), 9 (2015)Google Scholar
  5. 5.
    Cho, J.D., Hussain, G., Park, J.H., et al.: Visual fatigue measurement model based on multi-area variance in a stereoscopy. In: Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), pp. 1–2 (2016)Google Scholar
  6. 6.
    Kim, N., Park, J., Oh, S.: Visual clarity and comfort analysis for 3D stereoscopic imaging contents. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 11(2), 227–231 (2011)Google Scholar
  7. 7.
    Kim, N., Park, J., Oh, S.: Visual clarity and comfort analysis for 3D stereoscopic imaging contents. In: Park, D.S., Chao, H.C., Jeong, Y.S., Park, J. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 373, pp. 227–231. Springer, Singapore (2011). doi: 10.1007/978-981-10-0281-6_29 Google Scholar
  8. 8.
    Frey, J., Appriou, A., Lotte, F., Hachet, M.: Classifying EEG signals during stereoscopic visualization to estimate visual comfort. Comput. Intell. Neurosci. 2016, 1–11 (2016)CrossRefGoogle Scholar
  9. 9.
    Park, S., Won, M.J., Mun, S., Whang, M.: Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm? Int. J. Psychophys. 92(1), 42–48 (2014)CrossRefGoogle Scholar
  10. 10.
    Zou, B., Liu, Y., Guo, M., Wang, Y.: EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict. J. Disp. Technol. 11(12), 1076–1083 (2015)CrossRefGoogle Scholar
  11. 11.
    Chen, C.X., Li, K., Wu, Q.Y., et al.: EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays 34(2), 81–88 (2013)CrossRefGoogle Scholar
  12. 12.
    Oh, C., Ham, B., Choi, S., Sohn, K.: Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping. IEEE Trans. Broadcast. 61(2), 142–153 (2015)CrossRefGoogle Scholar
  13. 13.
    ITU-R: Methodology for the subjective assessment of the quality of television pictures. ITU-R. Technical report BT-500-13 (2012)Google Scholar
  14. 14.
    Chen, C.X., Wang, J., Li, K., et al.: Assessment visual fatigue of watching 3DTV using EEG power spectral parameters. Displays 35(5), 266–272 (2014)CrossRefGoogle Scholar
  15. 15.
    Zedeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1(1), 89–100 (1989)CrossRefGoogle Scholar
  16. 16.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yue Bai
    • 1
    • 2
  • Jun-Dong Cho
    • 2
  • Ghulam Hussain
    • 2
  • Song-Yun Xie
    • 1
  1. 1.School of Electronic and InformationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations