Skip to main content

Adaptive Dynamic Programming for Human Postural Balance Control

  • Conference paper
  • First Online:
  • 4236 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Abstract

This paper provides a basis for studying human postural balance control about upright stance using adaptive dynamic programming (ADP) theory. Previous models of human sensorimotor control rely on a priori knowledge of system dynamics. Here, we provide an alternative framework based on the ADP theory. The main advantage of this new framework is that the system model is no longer required, and an adaptive optimal controller is obtained directly from input and state data. We apply this theory to simulate human balance behavior, and the obtained results are consistent with the experiment data presented in the past literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Horak, F., Nutt, J., Nashner, L.: Postural inflexibility in parkinsonian subjects. J. Neurol. Sci. 111(1), 46–58 (1992)

    Article  Google Scholar 

  2. Vaugoyeau, M., Hakam, H., Azulay, J.P.: Proprioceptive impairment and postural orientation control in Parkinson’s disease. Hum. Mov. Sci. 30(2), 405–414 (2011)

    Article  Google Scholar 

  3. Adkin, A.L., Frank, J.S., Jog, M.S.: Fear of falling and postural control in Parkinson’s disease. Mov. Disord. 18(5), 496–502 (2003)

    Article  Google Scholar 

  4. Alexander, N.B.: Postural control in older adults. J. Am. Geriatr. Soc. 42(1), 93–108 (1994)

    Article  Google Scholar 

  5. Laschi, C., Johansson, R.S.: Bio-inspired sensory-motor coordination. Auton. Rob. 25(1), 1–2 (2008)

    Article  Google Scholar 

  6. Nashner, L.M., McCollum, G.: The organization of human postural movements: a formal basis and experimental synthesis. Behav. Brain Sci. 8(01), 135 (1985)

    Article  Google Scholar 

  7. Golliday, C., Hemami, H.: Postural stability of the two-degree-of-freedom biped by general linear feedback. IEEE Trans. Autom. Control 21(1), 74–79 (1976)

    Article  MATH  Google Scholar 

  8. Kuo, A.D.: An optimal control model of human balance: can it provide theoretical insight to neural control of movement? In: Proceedings of the 1997 American Control Conference, vol. 5, pp. 2856–2860 (1997)

    Google Scholar 

  9. Kuo, A.D.: An optimal state estimation model of sensory integration in human postural balance. J. Neural Eng. 2(3), S235–S249 (2005)

    Article  MathSciNet  Google Scholar 

  10. Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995)

    Article  MathSciNet  Google Scholar 

  11. Bian, T., Jiang, Z.P.: Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design. Automatica 71, 348–360 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang, Y., Jiang, Z.P.: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica 48(10), 2699–2704 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang, Y., Jiang, Z.P.: Robust Adaptive Dynamic Programming. Wiley IEEE Press, Hoboken (2017)

    Book  MATH  Google Scholar 

  14. Jiang, Z.P., Jiang, Y.: Robust adaptive dynamic programming for linear and nonlinear systems: an overview. Eur. J. Control 19(5), 417–425 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lewis, F.L., Vrabie, D., Vamvoudakis, K.G.: Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. IEEE Control Syst. 32(6), 76–105 (2012)

    Article  MathSciNet  Google Scholar 

  16. Vamvoudakis, K.G.: Non-zero sum nash q-learning for unknown deterministic continuous-time linear systems. Automatica 61, 274–281 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vrabie, D., Vamvoudakis, K.G., Lewis, F.L.: Optimal adaptive control & differential games by reinforcement learning principles. Institution of Electrical Engineers (2013)

    Google Scholar 

  18. Bian, T., Jiang, Z.P.: Model-free robust optimal feedback mechanisms of biological motor control. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), June 2016

    Google Scholar 

  19. Jiang, Y., Jiang, Z.P.: Adaptive dynamic programming as a theory of sensorimotor control. Biol. Cybern. 108(4), 459–473 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. van der Kooij, H., Jacobs, R., Koopman, B., Grootenboer, H.: A multisensory integration model of human stance control. Biol. Cybern. 80(5), 299–308 (1999)

    Article  MATH  Google Scholar 

  21. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13(1), 114–115 (1968)

    Article  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Peterka, R.J., Black, F.O.: Age-related changes in human posture control: sensory organization tests (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Mauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mauro, E., Bian, T., Jiang, ZP. (2017). Adaptive Dynamic Programming for Human Postural Balance Control. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics