Performance Comparison of Motion Encoders: Hassenstein–Reichardt and Two-Detector Models

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10636)


Several motion-detection models have been proposed based on insect visual system studies. We specifically examine two models, the Hassenstein-Reichardt (HR) model and the two-detector (2D) model, before selecting model the more efficient motion encoders. We analytically obtained the mean and variance of stationary responses of the HR and the 2D models to white noise to evaluate performances of the two models. Especially when analyzing the 2D model, we calculated higher-order cumulants of a rectified Gaussian. Results show that the 2D model gives almost equal performance to that of the HR model in a biologically reasonable case.


Motion detection Neural coding White noise analysis Hassenstein–Reichardt model Two–detector model 



We are deeply grateful to Japanese Neural Network Society for supporting English proofreading.


  1. 1.
    Borst, A., Haag, J., Reiff, D.F.: Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010)CrossRefGoogle Scholar
  2. 2.
    Borst, A.: In search of the holy grail of fly motion vision. Eur. J. Neurosci. 40, 3285–3293 (2014)CrossRefGoogle Scholar
  3. 3.
    Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., Desplan, C.: Processing properties of on and off pathways for drosophila motion detection. Nature 512, 427–430 (2014)CrossRefGoogle Scholar
  4. 4.
    Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in rabbit’s retina. J. Physiol. 178, 477–504 (1965)CrossRefGoogle Scholar
  5. 5.
    Clark, D.A., Fitzgerald, J.E., Ales, J.M., Gohl, D.M., Silies, M.A., Norcia, A.M., Clandinin, T.R.: Flies and humans share a motion estimation strategy that exploits natural scene statistics. Nat. Neurosci. 17, 296–303 (2014)CrossRefGoogle Scholar
  6. 6.
    Borst, A., Helmstaedter, M.: Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067–1076 (2015)CrossRefGoogle Scholar
  7. 7.
    Franceschini, N.: Small brains, smart machines: from fly vision to robot vision and back again. Proc. IEEE 102, 751–781 (2014)CrossRefGoogle Scholar
  8. 8.
    Akima, H., Sato, S.: LSI implementation of neural network model for detecting local image motion in motion stereo vision [in japanese]. J. Jpn. Neural Netw. Soc. 22, 152–161 (2015)Google Scholar
  9. 9.
    Eichner, H., Joesch, M., Schnell, B., Rei, D.F., Borst, A.: Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011)CrossRefGoogle Scholar
  10. 10.
    Clark, D.A., Bursztyn, L., Horowitz, M.A., Schnitzer, M.J., Clandinin, T.R.: Defining the computational structure of the motion detector in drosophila. Neuron 70, 1165–1177 (2011)CrossRefGoogle Scholar
  11. 11.
    Egelhaaf, M., Borst, A., Reichardt, W.: Computational structure of a biological motion-detection system as revealed by local detector analysis in the flys nervous system. J. Opt. Soc. Am. A: 6, 1070–1087 (1989)CrossRefGoogle Scholar
  12. 12.
    Zanker, J.M., Srinivasan, M.V., Egelhaaf, M.: Speed tuning in elementary motion detectors of the correlation type. Biol. Cybern. 80, 109–116 (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Hidayat, E., Medvedev, A., Nordström, K.: Identification of the reichardt elementary motion detector model. In: Sun, C., Bednarz, T., Pham, T.D., Vallotton, P., Wang, D. (eds.) Signal and Image Analysis for Biomedical and Life Sciences. AEMB, vol. 823, pp. 83–105. Springer, Cham (2015). doi: 10.1007/978-3-319-10984-8_5 Google Scholar
  14. 14.
    Schnell, B., Weir, P.T., Roth, E., Fairhall, A.L., Dickinson, M.H.: Cellular mechanisms for integral feedback in visually guided behavior. Proc. Natl. Acad. Sci. 111, 5700–5705 (2014)CrossRefGoogle Scholar
  15. 15.
    Roy, S., van Steveninck, R.R.: Bilocal visual noise as a probe of wide field motion computation. J. Vis. 16, 1–19 (2011)Google Scholar
  16. 16.
    Leonhardt, A., Ammer, G., Meier, M., Serbe, E., Bahl, A., Borst, A.: Asymmetry of drosophila on and off motion detectors enhances real-world velocity estimation. Nat. Neurosci. 19, 706–715 (2016)CrossRefGoogle Scholar
  17. 17.
    Friedman, L., Glover, G.H., Krenz, D., Magnotta, V.: BIRN, the first.: reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage. 32, 1656–1668 (2006)CrossRefGoogle Scholar
  18. 18.
    Ikeda, H., Suzuki, Y., Morimoto, T., Aonishi, T.: Model selection of early vision system of drosophila melanogaster. IPSJ Trans. Math. Model. App. 9, 24–31 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graduate School of Interdisciplinary Science and EngineeringTokyo Institute of TechnologyMidori-ku, YokohamaJapan
  2. 2.School of ComputingTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations