Structure-Preserved Face Cartoonization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10636)

Abstract

Face cartoon synthesis has been proved to show wide range of uses in lots of fields, for example, instant message communication, suspects identity and online entertainment. In this paper, we propose a new dense descriptor based model to synthesize a face cartoon from a face photo which displays a great outcome. We generate two kinds of stylized face cartoons, one is called cartoon portraits and the other is called cartoon sketch. By integrating the two kinds of cartoons using guided filter, our results preserve the detail information of the input photo and generate good cartoon artistic style.

Keywords

Face cartoon Texture synthesis Local PatchMatch Guided filter Dense descriptor 

Notes

Acknowledgments

The work is supported by the National Natural Science Foundation of China(No. 61572316, 61671290), National High-tech R&D Program of China (863 Program) (No. 2015AA015904), the Key Program for International S&T Cooperation Project (No. 2016YFE0129500) of China, the Science and Technology Commission of Shanghai Municipality (No. 16DZ0501100), the interdisciplinary Program of Shanghai Jiao Tong University (No. 14JCY10).

References

  1. 1.
    Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1955–1967 (2009)CrossRefGoogle Scholar
  2. 2.
    Zhou, H., Kuang, Z., Wong, K.Y.K.: Markov weight fields for face sketch synthesis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1091–1097. IEEE (2012)Google Scholar
  3. 3.
    Song, Y., Bao, L., Yang, Q., Yang, M.-H.: Real-time exemplar-based face sketch synthesis. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 800–813. Springer, Cham (2014). doi: 10.1007/978-3-319-10599-4_51 Google Scholar
  4. 4.
    Li, H., Liu, G., Ngan, K.N.: Guided face cartoon synthesis. IEEE Trans. Multimedia 13(6), 1230–1239 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Liu, G., Wang, Z.: Cartoon face synthesis based on Markov network. In: 2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), p. 14. IEEE (2010)Google Scholar
  6. 6.
    Liu, S., Li, H., Xu, L.: Face cartoon synthesis based on the active appearance model. In: 2012 IEEE 12th International Conference on Computer and Information Technology (CIT), pp. 793–797. IEEE (2012)Google Scholar
  7. 7.
    Zhang, Y., Dong, W., Deussen, O., Huang, F., Li, K., Hu, B.G.: Data-driven face cartoon stylization. In: SIGGRAPH Asia 2014 Technical Briefs, pp. 1–4. ACM (2014)Google Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale- invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  11. 11.
    Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)CrossRefGoogle Scholar
  12. 12.
    Yang, H., Lin, W.Y., Lu, J.: Daisy filter flow: a generalized discrete approach to dense correspondences. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3406–3413 (2014)Google Scholar
  13. 13.
    Lu, J., Yang, H., Min, D., Do, M.N.: Patch match filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1854–1861 (2013)Google Scholar
  14. 14.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. TOG 28(3), 24 (2009)Google Scholar
  15. 15.
    Liu, Q., Tang, X., Jin, H., Lu, H., Ma, S.: A nonlinear approach for face sketch synthesis and recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 1005–1010. IEEE (2005)Google Scholar
  16. 16.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)Google Scholar
  17. 17.
    Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. (TOG) 23, 664–672. ACM (2004)Google Scholar
  18. 18.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations