Advertisement

Robust Visual Tracking via Occlusion Detection Based on Depth-Layer Information

  • Xiaoguang Niu
  • Zhipeng Cui
  • Shijie Geng
  • Jie Yang
  • Yu Qiao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10636)

Abstract

In this paper, we propose a novel occlusion detection algorithm based on depth-layer information for robust visual tracking. The scene can be classified into the near, the target and the far layer. We find that when occlusion happens, some background patches in the near layer will move into the target region and hence occlude the target. Based on this feature of occlusion, we propose an algorithm which exploits both temporal and spatial context information to discriminate occlusion from target appearance variation. Using the framework of particle filter, our algorithm divides the background region around the target into multiple patches and tracks each of them. The background patch that occludes the target is identified collaboratively by the tracking results of both background and target trackers. Then the occlusion is evaluated with the target visibility function. If occlusion is detected, the target template stops updating. Comprehensive experiments in OTB-2013 and VOT-2015 show that our tracker achieves comparable performance with other state-of-art trackers.

Keywords

Visual tracking Occlusion detection Template update Correlation filter 

Notes

Acknowledgments

This research is partly supported by NSFC (No: 61375048), USCAST2015-13, USCAST2016-23, SAST2016008.

References

  1. 1.
    Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1430–1438 (2016)Google Scholar
  2. 2.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)Google Scholar
  3. 3.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)CrossRefGoogle Scholar
  4. 4.
    Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)Google Scholar
  5. 5.
    Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)Google Scholar
  6. 6.
    Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). doi: 10.1007/978-3-319-46454-1_29 CrossRefGoogle Scholar
  7. 7.
    Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). doi: 10.1007/978-3-319-16181-5_18 Google Scholar
  8. 8.
    Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, Nottingham, 1–5 September 2014. BMVA Press (2014)Google Scholar
  9. 9.
    Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 749–758 (2015)Google Scholar
  10. 10.
    Wang, S., Zhang, S., Liu, W., Metaxas, D.N.: Visual tracking with reliable memories. In: International Joint Conference on Artificial Intelligence, New York, United States, pp. 9–15 (2016)Google Scholar
  11. 11.
    Yilmaz, A., Li, X., Shah, M.N.: Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1531–1536 (2004)CrossRefGoogle Scholar
  12. 12.
    Mathias, M., Benenson, R., Timofte, R., Van Gool, L.: Handling occlusions with Franken-classifiers. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1505–1512 (2013)Google Scholar
  13. 13.
    Zhang, T., Jia, K., Xu, C., Ma, Y., Ahuja, N.: Partial occlusion handling for visual tracking via robust part matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1258–1265. IEEE (2014)Google Scholar
  14. 14.
    Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4902–4912 (2015)Google Scholar
  15. 15.
    Li, Y., Zhu, J., Hoi, S.C.: Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 353–361 (2015)Google Scholar
  16. 16.
    Liu, S., Zhang, T., Cao, X., Xu, C.: Structural correlation filter for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2016Google Scholar
  17. 17.
    Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)CrossRefGoogle Scholar
  18. 18.
    Mei, X., Ling, H.: Robust visual tracking using 1 minimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)Google Scholar
  19. 19.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)Google Scholar
  20. 20.
    Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Čehovin, L., Fernandez, G., Vojir, T., Häger, G.: The visual object tracking VOT2015 challenge results. In: Visual Object Tracking Workshop 2015 at Proceedings of the IEEE International Conference on Computer Vision, December 2015Google Scholar
  21. 21.
    Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 263–270. IEEE (2011)Google Scholar
  22. 22.
    Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1845. IEEE (2012)Google Scholar
  23. 23.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  24. 24.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33765-9_50 CrossRefGoogle Scholar
  25. 25.
    Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xiaoguang Niu
    • 1
  • Zhipeng Cui
    • 1
  • Shijie Geng
    • 1
  • Jie Yang
    • 1
  • Yu Qiao
    • 1
  1. 1.Institute of Image Processing and Pattern Recognition, Department of AutomationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations