The Camouflage Color Target Detection with Deep Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10636)


The camouflage color target is similar to the background, so the detection is very difficult. How to identify the camouflage color target is still a challenging visual task. In order to solve the problem, we propose a camouflage color target detection algorithm based on image enhancement. Firstly, the image enhancement algorithm is used to realize the difference between the target and the background feature. Secondly, the region proposal network (RPN) is used to realize the accurate positioning of the specific target, and the extraction area ROI is identified by the classification layer in the deep neural network. Finally, we realize the detection with a camouflage color target. In this paper, the detection algorithm received better detection results in the leaves of butterfly and chameleon data collection.


Target detection Camouflage color CLAHE Faster R-CNN 



The paper was supported in part by the National Natural Science Foundation (NSFC) of China under Grant No. 61365003 and Gansu Province Basic Research Innovation Group Project No. 1506RJIA031.


  1. 1.
    Pillai, S.S., Swamy, M.N.S.: Camouflaged target detection using real-time video fusion algorithm based on multiscale transforms. In: CCECE, vol. 27, no. 1, pp. 1–5 (2014)Google Scholar
  2. 2.
    Huang, Z.Q., Jiang, Z.H.: Tracking camouflaged objects with weighted region consolidation. In: DICTA, p. 24 (2005)Google Scholar
  3. 3.
    Hnaidi, H., Guerin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation using diffusion equation. CGF 29(7), 2179–2186 (2010)Google Scholar
  4. 4.
    Uijlings, J.R.R., Sande, K.E., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)CrossRefGoogle Scholar
  5. 5.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)Google Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi: 10.1007/978-3-319-10578-9_23 Google Scholar
  7. 7.
    Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)Google Scholar
  8. 8.
    Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: arXiv e-prints arXiv:1506.01497v3 [cs.CV] (2016)
  9. 9.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485 (1994)Google Scholar
  10. 10.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi: 10.1007/978-3-319-10590-1_53 Google Scholar
  11. 11.
    Lecun, Y., Jackel, L.D., Cortes, C., Denker, J.S., et al.: Learning algorithms for classification: a comparison on handwritten digit recognition. In: NNSMP, pp. 261–276 (2000)Google Scholar
  12. 12.
    Rahman, Z., Jobson, D.J., Woodell, G.A.: Multi-scale retinex for color image enhancement. In: ICIP, pp. 1003–1006 (1996)Google Scholar
  13. 13.
    Lee, E., Kim, S., Kang, W., Seo, D., Paik, J.: Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. GRSL 10(1), 62–66 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations