Robust Visual Tracking by Hierarchical Convolutional Features and Historical Context

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10636)

Abstract

In this paper, we present a visual tracking method to address the problem of model drift, which usually occurs because of drastic change on target appearance, such as motion blur, illumination, out-of-view and rotation. It has been proved that the hierarchical convolutional features of deep neural networks learned by huge classification datasets are generic for other task and can aid the tracker’s power of discrimination. Ensemble-based trackers have been studied also to offer historical context for drift correction. We combine these two advantages into our proposed tracker, in which correlation filters are learned by hierarchical convolutional features and preserved as snapshots in an ensemble in certain occasion. Such an ensemble is capable of encoding the target appearance as well as provide historical context to prevent drift. Such context is considered to be complementary to correlation filters and convolutional features. The experimental results demonstrate the competitive performance against state-of-the-art trackers.

Keywords

Visual tracking Correlation filters Ensemble Convolutional neural networks 

Notes

Acknowledgement

This research is supported by Science and Technology Planning Project of Guangdong Province, China (No. 2016A020210086, No. 2017A020208041).

References

  1. 1.
    Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1619–1632 (2011)CrossRefGoogle Scholar
  2. 2.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422 (2012)CrossRefGoogle Scholar
  3. 3.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. Proc. Br. Mach. Vis. Conf. 1, 1–10 (2006)Google Scholar
  4. 4.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583–596 (2015)CrossRefGoogle Scholar
  5. 5.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. pp. 886–893 (2005)Google Scholar
  6. 6.
    Danelljan, M., Khan, F.S., Felsberg, M., Van De Weijer, J.: Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)Google Scholar
  7. 7.
    Wang, N., Shi, J., Yeung, D.Y., Jia, J.: Understanding and diagnosing visual tracking systems. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3101–3109 (2015)Google Scholar
  8. 8.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)Google Scholar
  9. 9.
    Liu, Y., Cheng, M.-M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. (2016)Google Scholar
  10. 10.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. Adv. Neural. Inf. Process. Syst. 27, 487–495 (2014)Google Scholar
  11. 11.
    Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 621–629 (2015)Google Scholar
  12. 12.
    Wang, N., Li, S., Gupta, A., Yeung, D.-Y.: Transferring rich feature hierarchies for robust visual tracking. http://arxiv.org/abs/1501.04587
  13. 13.
    Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)Google Scholar
  14. 14.
    Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5388–5396 (2015)Google Scholar
  15. 15.
    Li, J., Hong, Z., Zhao, B.: Robust visual tracking by exploiting the historical tracker snapshots. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 604–612 (2016)Google Scholar
  16. 16.
    Kwon, J., Lee, K.M.: Tracking by sampling and integrating multiple trackers. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1428–1441 (2013)Google Scholar
  17. 17.
    Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: European Conference on Computer Vision, pp. 188–203 (2014)Google Scholar
  18. 18.
    Hu, Z., Gao, Y., Wang, D., Tian, X.: A universal update-pacing framework for visual tracking. In: Proceedings - International Conference on Image Processing, ICIP, pp. 1704–1708 (2016)Google Scholar
  19. 19.
    Lee, D., Sim, J., Kim, C.: Multihypothesis trajectory analysis for robust visual tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5008–5096 (2015)Google Scholar
  20. 20.
    Wu, Y., Lim, J., Yang, M.-H: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). IEEECrossRefGoogle Scholar
  21. 21.
    Bolme, D., Beveridge, J.R., Draper, B. a., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)Google Scholar
  22. 22.
    Henriques, J., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Comput. Vision–ECCV (2012)Google Scholar
  23. 23.
    Danelljan, M., Häger, G., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference (2014)Google Scholar
  24. 24.
    Danelljan, M., Gustav, H., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)Google Scholar
  25. 25.
    Chen, Z., Hong, Z., Tao, D.: An experimental survey on correlation filter-based tracking. http://arxiv.org/abs/1509.05520
  26. 26.
    Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., Yang, M.-H.: Hedged deep tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4303–4311 (2016)Google Scholar
  27. 27.
    Ma, C., Huang, J. Bin, Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2016)Google Scholar
  28. 28.
    Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015)Google Scholar
  29. 29.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–14 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.South China Agricultural UniversityGuangzhouChina

Personalised recommendations