Advertisement

A Comparison of Supervised Machine Learning Algorithms for Classification of Communications Network Traffic

  • Pramitha Perera
  • Yu-Chu Tian
  • Colin Fidge
  • Wayne Kelly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10634)

Abstract

Automated network traffic classification is a basic requirement for managing Quality of Service in communications networks. This research compares the performance of six widely-used supervised machine learning algorithms for classifying network traffic. The evaluations were conducted for classification of five distinct network traffic classes and two feature selection techniques. Our comparative results show that the Random Forest and Decision Tree algorithms are promising classifiers for network traffic in terms of both classification accuracy and computational efficiency.

Keywords

Classification Network traffic Machine learning QoS Random Forest Decision Trees 

Notes

Acknowledgement

This work was supported in part by the Australian Research Council (ARC) under the Discovery Project scheme (Grant Nos. DP160102571 and DP170103305).

References

  1. 1.
    Waikato environment for knowledge analysis (weka), version 3.6.6 (c), 1999–2011. The University of Waikato, Hmilton, New Zealand. http://www.cs.waikato.ac.nz/~ml/weka/
  2. 2.
    Alshammari, R., Zincir-Heywood, A.N.: Can encrypted traffic be identified without port numbers, IP addresses and payload inspection? Comput. Netw. 55(6), 1326–1350 (2011)CrossRefGoogle Scholar
  3. 3.
    Cao, J., Fang, Z., Qu, G., Sun, H., Zhang, D.: An accurate traffic classification model based on support vector machines. Int. J. Netw. Manag. 27, e1962 (2017)CrossRefGoogle Scholar
  4. 4.
    Ertam, F., Avc, E.: A new approach for internet traffic classification: GA-WK-ELM. Measurement 95, 135–142 (2017)CrossRefGoogle Scholar
  5. 5.
    Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, ML92, pp. 249–256. Morgan Kaufmann Publishers Inc., San Francisco (1992)Google Scholar
  6. 6.
    Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). doi: 10.1007/3-540-57868-4_57 CrossRefGoogle Scholar
  7. 7.
    Li, W., Moore, A.W.: A machine learning approach for efficient traffic classification. In: 2007 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Institute of Electrical and Electronics Engineers (IEEE) (2007)Google Scholar
  8. 8.
    Li, Z., Yuan, R., Guan, X.: Accurate classification of the internet traffic based on the SVM method. In: 2007 IEEE International Conference on Communications. IEEE (2007)Google Scholar
  9. 9.
    Munther, A., Othman, R.R., Alsaadi, A.S., Anbar, M.: A performance study of hidden Markov model and random forest in internet traffic classification. In: Kim, K., Joukov, N. (eds.) Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 319–329. Springer, Singapore (2016). doi: 10.1007/978-981-10-0557-2_32 CrossRefGoogle Scholar
  10. 10.
    Nguyen, T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. Commun. Surv. Tuts. 10(4), 56–76 (2008)CrossRefGoogle Scholar
  11. 11.
    Nguyen, T.T.T., Armitage, G., Branch, P., Zander, S.: Timely and continuous machine-learning-based classification for interactive IP traffic. IEEE/ACM Trans. Netw. 20(6), 1880–1894 (2012)CrossRefGoogle Scholar
  12. 12.
    Peng, L., Yang, B., Chen, Y.: Hierarchical RBF neural network using for early stage internet traffic identification. In: 2014 IEEE 17th International Conference on Computational Science and Engineering. Institute of Electrical and Electronics Engineers (IEEE) (2014)Google Scholar
  13. 13.
    Risso, F., Baldi, M., Morandi, O., Baldini, A., Monclus, P.: Lightweight, payload-based traffic classification: an experimental evaluation. In: 2008 IEEE International Conference on Communications. IEEE (2008)Google Scholar
  14. 14.
    Rizzi, A., Iacovazzi, A., Baiocchi, A., Colabrese, S.: A low complexity real-time internet traffic flows neuro-fuzzy classifier. Comput. Netw. 91, 752–771 (2015)CrossRefGoogle Scholar
  15. 15.
    Rouhi, R., Farshid, K., Amiri, M.: Improving the intrusion detection systems’ performance by correlation as a sample selection method. J. Comput. Sci. Appl. 1(3), 33–38 (2013)Google Scholar
  16. 16.
    Velan, P., Čermák, M., Čeleda, P., Drašar, M.: A survey of methods for encrypted traffic classification and analysis. Int. J. Netw. Manag. 25(5), 355–374 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Chen, C., Xiang, Y., Zhou, W., Xiang, Y.: Internet traffic classification by aggregating correlated naive bayes predictions. IEEE Trans. Inf. Forensics Secur. 8(1), 5–15 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pramitha Perera
    • 1
  • Yu-Chu Tian
    • 1
  • Colin Fidge
    • 1
  • Wayne Kelly
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations