Three-Dimensional Surface Feature for Hyperspectral Imagery Classification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10634)

Abstract

Gabor surface feature (GSF) uses the first order and second order derivatives of Gabor magnitude pictures (GMPs) to jointly represent image. However, GSF can not excavate the contextual information that hides in the spectral-spatial structure of three-dimensional hyperspectral imagery since GSF can only deal with spatial relationships. Meanwhile, GSF runs on GMPs with multi-scale and multi-orientation, which leads to dimensional explosion problem. Aiming at these two problems, three-dimensional surface feature (3DSF) approach is proposed for hyperspectral imagery in this paper. 3DSF directly deals with the raw hyperspectral imagery data and utilizes its first order derivative magnitude to jointly represent hyperspectral imagery. Experiments on three real hyperspectral datasets, including Pavia University, Houston University and Indian Pines, verify the effectiveness of the proposed 3DSF approach.

Keywords

Hyperspectral imagery classification Feature extraction Surface feature 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61671307, in part by the Guangdong Special Support Program of Top-notch Young Professionals under Grant 2015TQ01X238, and in part by the Shenzhen Scientific Research and Development Funding Program under Grant JCYJ20160422093647889 and Grant SGLH20150206152559032.

References

  1. 1.
    Tong, Q., Xue, Y., Zhang, L.: Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(1), 70–91 (2014)Google Scholar
  2. 2.
    Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)CrossRefGoogle Scholar
  3. 3.
    Plaza, A., Atli Benediktsson, J., Boardman, J., Brazile, J., Bruzzone, L., Camps-Vails, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcinie, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, 110–122 (2009)CrossRefGoogle Scholar
  4. 4.
    Benediktsson, J.A., Pesaresi, M., Amason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41(9), 1940–1949 (2003)CrossRefGoogle Scholar
  5. 5.
    Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.M., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)CrossRefGoogle Scholar
  6. 6.
    Dalla Mura, M., Atli Benediktsson, J., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)CrossRefGoogle Scholar
  7. 7.
    Fauvel, M., Tarabalka, Y., Atli Benediktsson, J., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)CrossRefGoogle Scholar
  8. 8.
    Ghamisi, P., Plaza, J., Chen, Y., Li, J., Plaza, A.J.: Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci. Remote Sens. Mag. 5(1), 8–32 (2017)CrossRefGoogle Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Jia, S., Hu, J., Zhu, J., Jia, X., Li, Q.: Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 55(4), 2399–2413 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)CrossRefGoogle Scholar
  12. 12.
    Vigneshl, T., Thyagharajan, K.: Local binary pattern texture feature for satellite imagery classification. In: International Conference Science Engineering and Management Research (ICSEMR), pp. 1–6 (2014)Google Scholar
  13. 13.
    Huang, X., Li, S.Z., Wang, Y.: Shape localization based on statistical method using extended local binary pattern. In: Third International Conference on Image and Graphics. pp. 184–187. IEEE Computer Society (2004)Google Scholar
  14. 14.
    Yan, K., Chen, Y., Zhang, D.: Gabor surface feature for face recognition. In: First Asian Conference on Pattern Recognition (ACPR), pp. 288–292 (2011)Google Scholar
  15. 15.
    Liu, J., Vemuri, B.C., Marroquin, J.L.: Local frequency representations for robust multimodal image registration. IEEE Trans. Med. Imaging 21(5), 462–469 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations