DEM Extensions: Flexible Substrate Models

  • Tarek I. ZohdiEmail author
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)


In certain applications, because the substrate is fragile, knowledge of the induced stresses is important in order to control the process.


Multibody Dynamics Formulations Stress-induced Substance Imprint Lithography Initial Time Step Size Photoresist Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nakanishi, H., Bishop, K.J.M., Kowalczyk, B., Nitzan, A., Weiss, E.A., Tretiakov, K.V., Apodaca, M.M., Klajn, R., Stoddart, J.F., Grzybowski, B.A.: Photoconductance and inverse photoconductance in thin films of functionalized metal nanoparticles. Nature 460, 371–375 (2009)CrossRefGoogle Scholar
  2. 2.
    Fuller, S.B., Wilhelm, E.J., Jacobson, J.M.: Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11, 54–60 (2002)CrossRefGoogle Scholar
  3. 3.
    Samarasinghe, S.R., Pastoriza-Santos, I., Edirisinghe, M.J., Reece, M.J., Liz-Marzan, L.M.: Printing gold nanoparticles with an electrohydrodynamic direct write device. Gold Bull. 39, 48–53 (2006)CrossRefGoogle Scholar
  4. 4.
    Ahmad, Z., Rasekh, M., Edirisinghe, M.: Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol. Mater. Eng. 295, 315–319 (2010)CrossRefGoogle Scholar
  5. 5.
    Gamota, D., Brazis, P., Kalyanasundaram, K., Zhang, J.: Printed Organic and Molecular Electronics. Kluwer Academic Publishers, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)CrossRefGoogle Scholar
  7. 7.
    Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171–176 (2004)CrossRefGoogle Scholar
  8. 8.
    Huang, D., Liao, F., Molesa, S., Redinger, D., Subramanian, V.: Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–417 (2003)CrossRefGoogle Scholar
  9. 9.
    Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)CrossRefGoogle Scholar
  10. 10.
    Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-Ring Effect-Based Three Dimensional Patterning of Micro, Nanoparticle Assembly with a Single Droplet. Langmuir 26(14), 11690–11698 (2010)CrossRefGoogle Scholar
  11. 11.
    Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu, M.C., Pisano, A.P.: Fast, High-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–11 (2012)CrossRefGoogle Scholar
  12. 12.
    Choi, S., Pisano, A.P., Zohdi, T.I.: An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets. J. Thin Solid Films 537(30), 180–189 (2013)CrossRefGoogle Scholar
  13. 13.
    Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phy. Lett. 99, 253102-1–253102-3 (2012)Google Scholar
  14. 14.
    Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 412–417 (2010)Google Scholar
  15. 15.
    Fathi, S., Dickens, P., Khodabakhshi, K., Gilbert, M.: Microcrystal particles behaviour in inkjet printing of reactive nylon materials. J. Manuf. Sci. Eng. 135, 011009.
  16. 16.
    Martin, P.: Handbook of Deposition Technologies for Films and Coatings. 3rd edn. Elsevier (2009)Google Scholar
  17. 17.
    Martin, P.: Introduction to surface engineering and functionally engineered materials. Scrivener and Elsevier (2011)Google Scholar
  18. 18.
    Zohdi, T.I.: Genetic design of solids possessing a random-particulate microstructure. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361(1806), 1021–1043 (2003)Google Scholar
  19. 19.
    Zohdi, T.I.: On the compaction of cohesive hyperelastic granules at finite strains. Proc. R. Soc. 454(2034), 1395–1401 (2003)Google Scholar
  20. 20.
    Zohdi, T.I.: Computational design of swarms. Int. J. Numer. Method. Eng. 57, 2205–2219 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zohdi, T.I.: Constrained inverse formulations in random material design. Comput. Method. Appl. Mech. Eng. 1–20. 192(28–30), 18, 3179–3194 (2003)Google Scholar
  22. 22.
    Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlin. Mech. 39, 281–297 (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Method. Appl. Mech. Eng. 193(6–8), 679–699 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zohdi, T.I.: A computational framework for agglomeration in thermo-chemically reacting granular flows. Proc. R. Soc. 460(2052), 3421–3445 (2004)Google Scholar
  26. 26.
    Zohdi, T.I.: Statistical ensemble error bounds for homogenized microheterogeneous solids. J. Appl. Math. Phys. (Zeitschrift für Angewandte Mathematik und Physik) 56(3), 497–515 (2005)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zohdi, T.I.: Charge-induced clustering in multifield particulate flow. Int. J. Numer. Method. Eng. 62(7), 870–898 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Method. Appl. Mech. Eng. 196, 3927–3950 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zohdi, T.I.: Particle collision and adhesion under the influence of near-fields. J. Mech. Mater. Struct. 2(6), 1011–1018 (2007)CrossRefGoogle Scholar
  30. 30.
    Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Method. Eng. 76, 1250–1279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Method. Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Method. Eng. 17(2), 109–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Method. Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Method. Eng. 85, 1140–1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zohdi, T.I.: Joule-heating field phase-amplification in particulate-doped dielectrics. Int. J. Eng. Sci. 49, 30–40 (2011)CrossRefGoogle Scholar
  36. 36.
    Zohdi, T.I.: Estimation of electrical-heating load-shares for sintering of powder mixtures. Proc. R. Soc. 468, 2174–2190 (2012)CrossRefGoogle Scholar
  37. 37.
    Zohdi, T.I.: Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput. Mech. 50(2), 257–268 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zohdi, T.I.: On the reduction of heat generation in lubricants using microscale additives. Int. J. Eng. Sci. 62, 84–89 (2013)CrossRefGoogle Scholar
  39. 39.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)CrossRefGoogle Scholar
  41. 41.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Method. Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  42. 42.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)Google Scholar
  43. 43.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  44. 44.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  45. 45.
    Zohdi, T.I.: Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J. Manuf. Sci. Eng. ASME MANU-14-1476.
  46. 46.
    Zohdi, T.I.: Modeling and simulation of the post-impact trajectories of particles in oblique precision shot-peening. Comput. Part. Mech. (2015).
  47. 47.
    Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015).
  49. 49.
    Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Method. Eng. 1–25 (2015).
  50. 50.
    Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics. Springer, Second Reprinting (Peer Reviewed) (2005, 2008)Google Scholar
  51. 51.
    Sevostianov, I., Kachanov, M.: Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater. 48(6), 1361–1370 (2000)CrossRefGoogle Scholar
  52. 52.
    Sevostianov, I., Kachanov, M.: Thermal conductivity of plasma sprayed coatings in relation to their microstructure, with Sevostianov, I. J. Therm. Spray Technol. 9(4), 478–482 (2001)CrossRefGoogle Scholar
  53. 53.
    Sevostianov, I., Kachanov, M.: Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations. Mater. Sci. Eng. A 297, 235–243 (2001)CrossRefGoogle Scholar
  54. 54.
    Dwivedi, G., Wentz, T., Sampath, S., Nakamura, T.: Assessing process and coating reliability through monitoring of process and design relevant coating properties. J. Thermal Spray Tech. 19, 695–712 (2010)CrossRefGoogle Scholar
  55. 55.
    Liu, Y., Nakamura, T., Dwivedi, G., Valarezo, A., Sampath, S.: Anelastic behavior of plasma sprayed zirconia coatings. J. Am. Ceram. Soc. 91, 4036–4043 (2008)CrossRefGoogle Scholar
  56. 56.
    Liu, Y., Nakamura, T., Srinivasan, V., Vaidya, A., Gouldstone, A., Sampath, S.: Nonlinear elastic properties of plasma sprayed zirconia coatings and associated relationships to processing conditions. Acta Mater. 55, 4667–4678 (2007)CrossRefGoogle Scholar
  57. 57.
    Nakamura, T., Liu, Y.: Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int. J. Solids Struct. 44, 1990–2009 (2007)CrossRefzbMATHGoogle Scholar
  58. 58.
    Nakamura, T., Qian, G., Berndt, C.C.: Effects of pores on mechanical properties of plasma sprayed ceramic coatings. J. Am. Ceram. Soc. 83, 578–584 (2000)CrossRefGoogle Scholar
  59. 59.
    Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech. Mater. 27, 91–110 (1998)CrossRefGoogle Scholar
  60. 60.
    Grekov, M.A., Kostyrko, S.A.: A multilayer film coating with slightly curved boundary. Int. J. Eng. Sci. 89, 61–74 (2015)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Huang, Y., Leu, M.C., Mazumdar, J., Donmez, A.: Additive manufacturing: current state, future potential, gaps and needs, and recommendation. J. Manuf. Sci. Eng. 137, 014001 (2015)CrossRefGoogle Scholar
  62. 62.
    Kachanov, M., Abedian, B.: On the isotropic viscosity of suspensions containing particles of diverse shapes and orientations. 94, 71–85 (2015)Google Scholar
  63. 63.
    Abedian, B., Kachanov, M.: On the effective viscosity of suspensions. Int. J. Eng. Sci. 48(11), 962–965 (2010).
  64. 64.
    Sevostianov, I., Kachanov, M.: Effective properties of heterogeneous materials: proper application of the non-interaction and the "dilute limit" approximations. Int. J. Eng. Sci. 58, 124–128 (2012)CrossRefGoogle Scholar
  65. 65.
    Onate, E., Idelsohn, S.R., Celigueta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Method. Appl. Mech. Eng. 197(19–20), 1777–1800 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Onate, E., Celigueta, M.A., Idelsohn, S.R., Salazar, F., Surez, B.: Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48, 307–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Rojek, J., Labra, C., Su, O., Onate, E.: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int. J. Solids Struct. 49, 1497–1517 (2012).
  68. 68.
    Carbonell, J.M., Onate, E., Suarez, B.: Modeling of ground excavation with the particle finite element method. J. Eng. Mech. ASCE 136, 455–463 (2010)CrossRefGoogle Scholar
  69. 69.
    Labra, C., Onate, E.: High-density sphere packing for discrete element method simulations. Commun. Numer. Methods Eng. 25(7), 837–849 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J.: Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions. Comput. Part. Mech. 1(1), 3–13 (2014)CrossRefGoogle Scholar
  71. 71.
    Cante, J., Davalos, C., Hernandez, J.A., Oliver, J., Jonsen, P., Gustafsson, G., Haggblad, H.A.: PFEM-based modeling of industrial granular flows. Comput. Part. Mech. 1(1), 47–70 (2014)CrossRefGoogle Scholar
  72. 72.
    Rojek, J.: Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput. Part. Mech. 1(1), 71–84 (2014)CrossRefGoogle Scholar
  73. 73.
    Bolintineanu, D.S., Grest, G.S., Lechman, J.B., Pierce, F., Plimpton, S.J., Schunk, P.R.: Particle dynamics modeling methods for colloid suspensions. Comput. Part. Mech. 1(3), 321–356 (2014)Google Scholar
  74. 74.
    Avci, B., Wriggers, P.: A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J. Appl. Mech. 79(010901), 1–7 (2012)Google Scholar
  75. 75.
    Onate, E., Celigueta, M.A., Latorre, S., Casas, G., Rossi, R., Rojek, J.: Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput. Part. Mech. 1(1), 85–102 (2014)Google Scholar
  76. 76.
    Boussinesq, J.: Application des Potentials a l’ etude de l’ equilibre et du mouvement des solides elastiques. Paris: Gauthier-Villars, 45, 108 (1885)Google Scholar
  77. 77.
    Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer (2003)Google Scholar
  78. 78.
    Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phy. 44, 3888–3894 (1966)CrossRefGoogle Scholar
  79. 79.
    Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order & densities in jammed hard-particle packings. Phy. Rev. E 66, 041109 (2002)CrossRefGoogle Scholar
  80. 80.
    Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 13, 303, 990–993 (2004a)Google Scholar
  81. 81.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I algorithmic details. J. Comput. Phy. 202, 737 (2005a)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids. J. Comput. Phys. 202, 765 (2005b)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)Google Scholar
  84. 84.
    Wriggers, P.: Computational Contact Mechanics. Wiley (2002)Google Scholar
  85. 85.
    Afazov, S.M., Becker, A.A., Hyde, T.H.: Mathematical modeling and implementation of residual stress mapping from microscale to macroscale finite element models. J. Manuf. Sci. Eng. 134(2), 021001 (2012)CrossRefGoogle Scholar
  86. 86.
    Bagherifard, S., Giglio, M., Giudici, L. Guagliano, M.: Experimental and Numerical Analysis of Fatigue Properties Improvement in a Titanium Alloy by Shot Peening. In: Proceedings of the ASME. 49163; ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, vol. 2, pp. 317–322 (2010)Google Scholar
  87. 87.
    Elbella, A., Fadul, F., Uddanda, S.H., Kasarla, N.R.: Influence of shot peening parameters on process effectiveness. In: Proceedings of the ASME. 45196; Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, pp. 2015–2021 (2012)Google Scholar
  88. 88.
    Chen, Z., Yang, F. and Meguid, S.A.: Realistic Finite Element Simulations of Arc-Height Development in Shot-Peened Almen Strips. J. Eng. Mater. Technol. 136(4), 041002–041002-7Google Scholar
  89. 89.
    Park, J.-U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007)CrossRefGoogle Scholar
  90. 90.
    Ko, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Luscombe, C.K., Frechet, J.M.J.: Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nan Letters. 7, 1869–1877 (2007)CrossRefGoogle Scholar
  91. 91.
    Ko, S.H., Park, I., Pan, H., Misra, N., Rogers, M.S., Grigoropoulos, C.P., Pisano, A.P.: ZnO nanowire network transistor fabrication by lowtemperature, allinorganic nanoparticle solution process. Appl. Phy. Lett. 92, 154102 (2008)CrossRefGoogle Scholar
  92. 92.
    Park, I., Ko, S.H., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Frechet, J.M.J., Lee, E.S., Jeong, J.H.: Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles. Adv. Mater. 20, 489 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations