Skip to main content

DEM Extensions: Electrically Aided Compaction and Sintering

  • Chapter
  • First Online:
  • 2284 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 60))

Abstract

One commonly used approach used in processing powdered materials is sintering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Monograph Appendix 2 gives a detailed analysis of Joule-heating phenomena.

  2. 2.

    Such forces can occur from viscous, surrounding, interstitial fluid.

  3. 3.

    \(I\!K_{ij}\) can be approximated by an average interfacial value of the \(i-j\) pair, \(I\!K_{ij}\approx \frac{I\!K_i+I\!K_j}{2}\). If the materials are the same, this collapses to simply \(I\!K\). As for the mechanical contact, \(A^c_{ij}\) is the contact area associated with the particle pair (ij).

  4. 4.

    The transverse dimensions of the box were set to be approximately unity, initially. All system parameters can be scaled to describe any specific system of interest.

References

  1. Zohdi, T.I.: Estimation of electrical-heating load-shares for sintering of powder mixtures. Proc. R. Soc. 468, 2174–2190 (2012)

    Article  Google Scholar 

  2. Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199, 79–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Demkowicz, L.: Computing with hp-Adaptive Finite Elements. I. One- and Two-dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC (2006)

    Google Scholar 

  4. Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W. and Zdunek, A.: Computing with Hp-Adaptive Finite Elements, Vol. 2: Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. CRC Press, Taylor and Francis (2007)

    Google Scholar 

  5. Akisanya, A.R., Cocks, A.C.F., Fleck, N.A.: The yield behavior of metal powders. Int. J. Mech. Sci. 39, 1315–1324 (1997)

    Article  Google Scholar 

  6. Anand, L., Gu, C.: Granular materials: constitutive equations and shear localization. J. Mech. Phys. Solids 48, 1701–1733 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, S., Abou-Chedid, G.: Yield behavior of metal powder assemblages. J. Mech. Phys. Solids 42, 383–398 (1994)

    Article  Google Scholar 

  8. Domas, F.: Eigenschaft profile und Anwendungsübersicht von EPE und EPP. Technical report of the BASF Company

    Google Scholar 

  9. Fleck, N.A.: On the cold compaction of powders. J. Mech. Phys. Solids 43, 1409–1431 (1995)

    Article  MATH  Google Scholar 

  10. Gethin, D.T., Lewis, R.W., Ransing, R.S.: A discrete deformable element approach for the compaction of powder systems. Modell. Simul. Mater. Sci. Eng. 11(1), 101–114 (2003)

    Google Scholar 

  11. Gu, C., Kim, M., Anand, L.: Constitutive equations for metal powders: application to powder forming processes. Int. J. Plast. 17, 147–209 (2001)

    Article  MATH  Google Scholar 

  12. Lewis, R.W., Gethin, D.T., Yang, X.S.S., Rowe, R.C.: A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int. J. Numer. Methods Eng. 62, 853–869 (2005)

    Article  MATH  Google Scholar 

  13. Ransing, R.S., Lewis, R.W., Gethin, D.T.: Using a deformable discrete-element technique to model the compaction behaviour of mixed ductile and brittle particulate systems. Philos. Trans. R. Soc.—Ser. A Math. Phys. Eng. Sci. 362(1822), pp. 1867–1884 (2004)

    Google Scholar 

  14. Tatzel, H.: Grundlagen der Verarbeitungstechnik von EPP-Bewährte und neue Verfahren. Technical report of the BASF Company (1996)

    Google Scholar 

  15. Zohdi, T.I.: Genetic design of solids possessing a random-particulate microstructure. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361(1806), 1021–1043 (2003)

    Google Scholar 

  16. Zohdi, T.I.: On the compaction of cohesive hyperelastic granules at finite strains. Proc. R. Soc. 454(2034), 1395–1401 (2003)

    Google Scholar 

  17. Zohdi, T.I.: Computational design of swarms. Int. J. Numer. Methods Eng. 57, 2205–2219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zohdi, T.I.: Constrained inverse formulations in random material design. Comput. Methods Appl. Mech. Eng. 1–20. 192, 28–30, 18, 3179–3194 (2003)

    Google Scholar 

  19. Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlinear Mech. 39, 281–297 (2004)

    Article  MATH  Google Scholar 

  20. Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193(6–8), 679–699 (2004)

    Article  MATH  Google Scholar 

  21. Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)

    Article  MATH  Google Scholar 

  22. Zohdi, T.I.: A computational framework for agglomeration in thermo-chemically reacting granular flows. Proc. R. Soc. 460(2052), 3421–3445 (2004)

    Google Scholar 

  23. Zohdi, T.I.: Statistical ensemble error bounds for homogenized microheterogeneous solids. J. Appl. Math. Phys. (Zeitschrift für Angewandte Mathematik und Physik) 56(3), 497–515 (2005)

    Google Scholar 

  24. Zohdi, T.I.: Charge-induced clustering in multifield particulate flow. Int. J. Numer. Methods Eng. 62(7), 870–898 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zohdi, T.I.: A simple model for shear stress mediated lumen reduction in blood vessels. Biomech. Model. Mechanobiol. 4(1), 57–61 (2005)

    Article  Google Scholar 

  26. Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Methods Appl. Mech. Eng. 196, 3927–3950 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Methods Eng. 76, 1250–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Methods Eng. 85, 1140–1159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zohdi, T.I.: Joule-heating field phase-amplification in particulate-doped dielectrics. Int. J. Eng. Sci. 49, 30–40 (2011)

    Article  Google Scholar 

  32. Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)

    Article  Google Scholar 

  34. Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)

    Google Scholar 

  35. Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)

    Article  MATH  Google Scholar 

  36. Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)

    Article  Google Scholar 

  37. Zohdi, T.I.: Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J. Manuf. Sci. Eng. ASME. MANU-14-1476 (2015). https://doi.org/10.1115/1.4029327

  38. Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012

  40. Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Methods Eng., 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1

  41. Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44, 3888–3894 (1966)

    Article  Google Scholar 

  42. Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E 66, 041109 (2002)

    Article  Google Scholar 

  43. Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)

    Google Scholar 

  44. Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal ellipsoid packings. Phys. Rev. Lett. 92, 255506 (2004)

    Article  Google Scholar 

  45. Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I Algorithmic details. J. Comput. Phys. 202, 737 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Google Scholar 

  47. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley (1998)

    Google Scholar 

  48. Pöschel, T., Schwager, T.: Computational Granular Dynamics. Springer (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek I. Zohdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohdi, T.I. (2018). DEM Extensions: Electrically Aided Compaction and Sintering. In: Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media. Lecture Notes in Applied and Computational Mechanics, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-70079-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70079-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70077-9

  • Online ISBN: 978-3-319-70079-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics