Advertisement

DEM Extensions: Electrically Aided Compaction and Sintering

  • Tarek I. ZohdiEmail author
Chapter
  • 1.6k Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)

Abstract

One commonly used approach used in processing powdered materials is sintering.

References

  1. 1.
    Zohdi, T.I.: Estimation of electrical-heating load-shares for sintering of powder mixtures. Proc. R. Soc. 468, 2174–2190 (2012)CrossRefGoogle Scholar
  2. 2.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Demkowicz, L.: Computing with hp-Adaptive Finite Elements. I. One- and Two-dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC (2006)Google Scholar
  4. 4.
    Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W. and Zdunek, A.: Computing with Hp-Adaptive Finite Elements, Vol. 2: Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. CRC Press, Taylor and Francis (2007)Google Scholar
  5. 5.
    Akisanya, A.R., Cocks, A.C.F., Fleck, N.A.: The yield behavior of metal powders. Int. J. Mech. Sci. 39, 1315–1324 (1997)CrossRefGoogle Scholar
  6. 6.
    Anand, L., Gu, C.: Granular materials: constitutive equations and shear localization. J. Mech. Phys. Solids 48, 1701–1733 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brown, S., Abou-Chedid, G.: Yield behavior of metal powder assemblages. J. Mech. Phys. Solids 42, 383–398 (1994)CrossRefGoogle Scholar
  8. 8.
    Domas, F.: Eigenschaft profile und Anwendungsübersicht von EPE und EPP. Technical report of the BASF CompanyGoogle Scholar
  9. 9.
    Fleck, N.A.: On the cold compaction of powders. J. Mech. Phys. Solids 43, 1409–1431 (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gethin, D.T., Lewis, R.W., Ransing, R.S.: A discrete deformable element approach for the compaction of powder systems. Modell. Simul. Mater. Sci. Eng. 11(1), 101–114 (2003)Google Scholar
  11. 11.
    Gu, C., Kim, M., Anand, L.: Constitutive equations for metal powders: application to powder forming processes. Int. J. Plast. 17, 147–209 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lewis, R.W., Gethin, D.T., Yang, X.S.S., Rowe, R.C.: A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int. J. Numer. Methods Eng. 62, 853–869 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ransing, R.S., Lewis, R.W., Gethin, D.T.: Using a deformable discrete-element technique to model the compaction behaviour of mixed ductile and brittle particulate systems. Philos. Trans. R. Soc.—Ser. A Math. Phys. Eng. Sci. 362(1822), pp. 1867–1884 (2004)Google Scholar
  14. 14.
    Tatzel, H.: Grundlagen der Verarbeitungstechnik von EPP-Bewährte und neue Verfahren. Technical report of the BASF Company (1996)Google Scholar
  15. 15.
    Zohdi, T.I.: Genetic design of solids possessing a random-particulate microstructure. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361(1806), 1021–1043 (2003)Google Scholar
  16. 16.
    Zohdi, T.I.: On the compaction of cohesive hyperelastic granules at finite strains. Proc. R. Soc. 454(2034), 1395–1401 (2003)Google Scholar
  17. 17.
    Zohdi, T.I.: Computational design of swarms. Int. J. Numer. Methods Eng. 57, 2205–2219 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zohdi, T.I.: Constrained inverse formulations in random material design. Comput. Methods Appl. Mech. Eng. 1–20. 192, 28–30, 18, 3179–3194 (2003)Google Scholar
  19. 19.
    Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlinear Mech. 39, 281–297 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193(6–8), 679–699 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zohdi, T.I.: A computational framework for agglomeration in thermo-chemically reacting granular flows. Proc. R. Soc. 460(2052), 3421–3445 (2004)Google Scholar
  23. 23.
    Zohdi, T.I.: Statistical ensemble error bounds for homogenized microheterogeneous solids. J. Appl. Math. Phys. (Zeitschrift für Angewandte Mathematik und Physik) 56(3), 497–515 (2005)Google Scholar
  24. 24.
    Zohdi, T.I.: Charge-induced clustering in multifield particulate flow. Int. J. Numer. Methods Eng. 62(7), 870–898 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zohdi, T.I.: A simple model for shear stress mediated lumen reduction in blood vessels. Biomech. Model. Mechanobiol. 4(1), 57–61 (2005)CrossRefGoogle Scholar
  26. 26.
    Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Methods Appl. Mech. Eng. 196, 3927–3950 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Methods Eng. 76, 1250–1279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Methods Eng. 85, 1140–1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zohdi, T.I.: Joule-heating field phase-amplification in particulate-doped dielectrics. Int. J. Eng. Sci. 49, 30–40 (2011)CrossRefGoogle Scholar
  32. 32.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  34. 34.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)Google Scholar
  35. 35.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  36. 36.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  37. 37.
    Zohdi, T.I.: Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J. Manuf. Sci. Eng. ASME. MANU-14-1476 (2015). https://doi.org/10.1115/1.4029327
  38. 38.
    Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012
  40. 40.
    Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Methods Eng., 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1
  41. 41.
    Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44, 3888–3894 (1966)CrossRefGoogle Scholar
  42. 42.
    Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E 66, 041109 (2002)CrossRefGoogle Scholar
  43. 43.
    Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)Google Scholar
  44. 44.
    Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal ellipsoid packings. Phys. Rev. Lett. 92, 255506 (2004)CrossRefGoogle Scholar
  45. 45.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I Algorithmic details. J. Comput. Phys. 202, 737 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)Google Scholar
  47. 47.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley (1998)Google Scholar
  48. 48.
    Pöschel, T., Schwager, T.: Computational Granular Dynamics. Springer (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations