Advertisement

DEM Extensions: Electrically Driven Deposition of Polydisperse Particulate Powder Mixtures

  • Tarek I. ZohdiEmail author
Chapter
  • 1.6k Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)

Abstract

A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally, or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise deposition is difficult or impossible using mechanical means alone.

References

  1. 1.
    Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44, 3888–3894 (1966)CrossRefGoogle Scholar
  2. 2.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order & densities in jammed hard-particle packings. Phys. Rev. E. 66, 041109 (2002)CrossRefGoogle Scholar
  4. 4.
    Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 13(303), 990–993 (2004)CrossRefGoogle Scholar
  5. 5.
    Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal ellipsoid packings. Phys. Rev. Lett. 92, 255506 (2004b)CrossRefGoogle Scholar
  6. 6.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I algorithmic details. J. Comput. Phys. 202, 737 (2005a)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids. J. Comput. Phys. 202, 765 (2005b)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Donev, A., Torquato, S., Stillinger, F.H.: Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E 71, 011105 (2005c)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  10. 10.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)CrossRefGoogle Scholar
  11. 11.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  13. 13.
    Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012
  15. 15.
    Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Methods Eng., 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1
  16. 16.
    Papageorgiou, D.T.: On the breakup of viscous liquid threads. Phys. Fluids. 7(7), 15291521 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eggers, J.: Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations