CM Approaches: Characterization of Particle-Functionalized Materials

  • Tarek I. ZohdiEmail author
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)


During the development of new particulate-functionalized materials, experiments to determine the appropriate combinations of particulate and matrix phases are time-consuming and expensive.


Microheterogeneous Materials Independent Load Average Strain Theorem Effective Material Response Usual Structural Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. Soc. London. 157, 49 (1867)CrossRefGoogle Scholar
  2. 2.
    Maxwell, J.C.: A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford (1873)zbMATHGoogle Scholar
  3. 3.
    Rayleigh, J.W.: On the influence of obstacles arranged in rectangular order upon properties of a medium. Phil. Mag. 32, 481–491 (1892)CrossRefzbMATHGoogle Scholar
  4. 4.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)Google Scholar
  5. 5.
    Jikov, V.V., Kozlov, S.M., Olenik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer (1994)Google Scholar
  6. 6.
    Hashin, Z.: Analysis of composite materials: a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Kluwer Academic Publishers (1993)Google Scholar
  8. 8.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Solids, 2nd edn. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  9. 9.
    Huet, C.: Universal conditions for assimilation of a heterogeneous material to an effective medium. Mecha. Res. Commun. 9(3), 165–170 (1982)CrossRefzbMATHGoogle Scholar
  10. 10.
    Huet, C.: On the definition and experimental determination of effective constitutive equations for heterogeneous materials. Mech. Res. Commun. 11(3), 195–200 (1984)CrossRefGoogle Scholar
  11. 11.
    Sevostianov, I., Kachanov, M.: Effective properties of heterogeneous materials: proper application of the non-interaction and the “dilute limit” approximations. Int. J. Eng. Sci. 58, 124–128 (2012)CrossRefGoogle Scholar
  12. 12.
    Zohdi, T.I.: Genetic design of solids possessing a random-particulate microstructure. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361(1806), 1021–1043 (2003)Google Scholar
  13. 13.
    Zohdi, T.I.: On the compaction of cohesive hyperelastic granules at finite strains. Proc. R. Soc. 454(2034), 1395–1401 (2003)Google Scholar
  14. 14.
    Zohdi, T.I.: Constrained inverse formulations in random material design. Comput. Methods Appl. Mech. Eng. 1–20 192(28–30), 18, 3179–3194 (2003)Google Scholar
  15. 15.
    Zohdi, T.I.: Statistical ensemble error bounds for homogenized microheterogeneous solids. J. Appl. Math. Phys. (Zeitschrift für Angewandte Mathematik und Physik) 56(3), 497–515 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Zohdi, T.I., Kachanov, M.: A note on the micromechanics of plastic yield of porous solids. Int. J. Fract./Lett. Micromechanics 133, L31–L35 (2005)Google Scholar
  17. 17.
    Zohdi, T.I.: Particle collision and adhesion under the influence of near-fields. J. Mech. Mater. Struct. 2(6), 1011–1018 (2007)CrossRefGoogle Scholar
  18. 18.
    Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Methods Eng. 76, 1250–1279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zohdi, T.I.: Charged wall-growth in channel-flow. Int. J. Eng. Sci. 48, 1520 (2010)Google Scholar
  21. 21.
    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zohdi, T.I., Kuypers, F.A., Lee, W.C.: Estimation of Red Blood Cell volume fraction from overall permittivity measurement. Int. J. Eng. Sci. 48, 1681–1691 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Methods Eng. 85, 1140–1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zohdi, T.I.: Joule-heating field phase-amplification in particulate-doped dielectrics. Int. J. Eng. Sci. 49, 30–40 (2011)CrossRefGoogle Scholar
  26. 26.
    Zohdi, T.I.: Electromagnetically-induced deformation of functionalized fabric. J. Elast. 105(1–2), 381–398 (2011)Google Scholar
  27. 27.
    Zohdi, T.I.: Estimation of electrical-heating load-shares for sintering of powder mixtures. Proc. R. Soc. 468, 2174–2190 (2012)CrossRefGoogle Scholar
  28. 28.
    Zohdi, T.I.: Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput. Mech. 50(2), 257–268 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zohdi, T.I.: On the reduction of heat generation in lubricants using microscale additives. Int. J. Eng. Sci. 62, 84–89 (2013)CrossRefGoogle Scholar
  30. 30.
    Zohdi, T.I.: Electromagnetically-induced vibration in particulate-doped materials. ASME J. Vib. Acoust. 135(3) (2013).
  31. 31.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)CrossRefGoogle Scholar
  33. 33.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  34. 34.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids. 19(1), 93–113 (2014)Google Scholar
  35. 35.
    Zohdi, T.I.: On cross-correlation between thermal gradients and electric fields. Int. J. Eng. Sci. 74, 143–150 (2014)CrossRefGoogle Scholar
  36. 36.
    Zohdi, T.I.: Mechanically-driven accumulation of microscale material at coupled solid-fluid interfaces in biological channels. Proc. R. Soc. Interface 11, 20130922 (2014)CrossRefGoogle Scholar
  37. 37.
    Zohdi, T.I.: A computational modeling framework for heat transfer processes in laser-induced dermal tissue removal. Comput. Mech. Eng. Sci. 98(3), 261–277 (2014)Google Scholar
  38. 38.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  39. 39.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Computat. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  40. 40.
    Zohdi, T.I.: Impact and penetration resistance of network models of coated lightweight fabric shielding. GAMM-Mitteilungen, vol. 37, Issue 1, p. 124150 (2014)Google Scholar
  41. 41.
    Zohdi, T.I.: Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J. Manuf. Sci. Eng. ASME MANU-14-1476 (2015).
  42. 42.
    Zohdi, T.I.: A computational modelling framework for high-frequency particulate obscurant cloud performance. Int. J. Eng. Sci. 89, 75–85 (2015)CrossRefGoogle Scholar
  43. 43.
    Ghosh, S.: Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method. CRC Press/Taylor & Francis (2011)Google Scholar
  44. 44.
    Ghosh, S., Dimiduk, D.: Computational Methods for Microstructure-Property Relations. Springer, NY (2011)Google Scholar
  45. 45.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. (Lond.) A65, 349–354 (1952)CrossRefGoogle Scholar
  46. 46.
    Chandrasekharaiah, D.S., Debnath, L.: Continuum Mechanics. Academic press (1994)Google Scholar
  47. 47.
    Voigt, W.: Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper. Wied. Ann. 38, 573–587 (1889)CrossRefzbMATHGoogle Scholar
  48. 48.
    Reuss, A.: Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9, 49–58 (1929)CrossRefzbMATHGoogle Scholar
  49. 49.
    Terada, K., Hori, M., Kyoya, T., Kikuchi, N.: Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37, 2229–2361 (2000)CrossRefzbMATHGoogle Scholar
  50. 50.
    Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50 (2002)Google Scholar
  51. 51.
    Hazanov, S., Huet, C.: Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J. Mech. Phys. Solids 42, 1995–2011 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)Google Scholar
  53. 53.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Aboudi, J.: Mechanics of Composite Materials-a Unified Micromechanical Approach, p. 29. Elsevier (1992)Google Scholar
  55. 55.
    Zohdi, T.I., Wriggers, P.: Introduction to computational micromechanics, Springer Verlag (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations