Advertisement

Summary and Closing Remarks

  • Tarek I. ZohdiEmail author
Chapter
  • 1.6k Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)

Abstract

The adoption of micromechanical material models and computational methods in additive manufacturing and 3D printing has the potential to bring a level of systematic analysis that can make it a reliable large-scale manufacturing process.

References

  1. 1.
    Avila, M., Gardner, J., Reich-Weiser, C., Tripathi, Vijayaraghavan, A., Dornfeld, D.A.: Strategies for burr minimization and cleanability in aerospace and automotive manufacturing. SAE Technical Paper 2005-01-3327 (2005). https://doi.org/10.4271/2005-01-3327
  2. 2.
    Dornfeld, D., Wright, P., Vijayaraghavan, A., Helu, M.: Enabling manufacturing research through interoperability. Trans. North Am. Manuf. Res. Inst. SME 37, 443–450 (2009)Google Scholar
  3. 3.
    Vijayaraghavan, A., Huet, L., Dornfeld, D., Sobel, W., Blomquist, B., Conley, M.: Addressing process planning and verification issues with MTConnect. Trans. North Am. Manuf. Res. Inst. SME 38, 557–564 (2010)Google Scholar
  4. 4.
    Vijayaraghavan, Dornfeld, D.: Automated energy monitoring of machine tools. CIRP Ann. 59(1), 21–24 (2010)Google Scholar
  5. 5.
    Dornfeld, D.A., Lee, D.E.: Precision Manufacturing. Springer, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Dornfeld, D. (ed.): Green Manufacturing Fundamentals and Applications. Springer, New York (2013)Google Scholar
  7. 7.
    Zohdi, T.I.: Genetic design of solids possessing a random-particulate microstructure. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 361(1806), 1021–1043 (2003)Google Scholar
  8. 8.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Method. Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zohdi, T.I.: On the compaction of cohesive hyperelastic granules at finite strains. Proc. R. Soc. 454(2034), 1395–1401 (2003)Google Scholar
  10. 10.
    Zohdi, T.I.: Computational design of swarms. Int. J. Numer. Method. Eng. 57, 2205–2219 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zohdi, T.I.: Constrained inverse formulations in random material design. Comput. Method. Appl. Mech. Eng. 1–20. 192(28–30), 18, 3179–3194Google Scholar
  12. 12.
    Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlinear Mech. 39, 281–297 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Method. Appl. Mech. Eng. 193(6), 679–699 (2004)Google Scholar
  14. 14.
    Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zohdi, T.I.: A computational framework for agglomeration in thermo-chemically reacting granular flows. Proc. R. Soc. 460(2052), 3421–3445 (2004)Google Scholar
  16. 16.
    Zohdi, T.I.: Statistical ensemble error bounds for homogenized microheterogeneous solids. J. Appl. Math. Phys. (Zeitschrift für Angewandte Mathematik und Physik) 56(3), 497–515 (2005)Google Scholar
  17. 17.
    Zohdi, T.I.: Charge-induced clustering in multifield particulate flow. Int. J. Numer. Method. Eng. 62(7D), 870–898 (2005)Google Scholar
  18. 18.
    Zohdi, T.I.: On the optical thickness of disordered particulate media. Mech. Mater. 38, 969–981 (2006)CrossRefGoogle Scholar
  19. 19.
    Zohdi, T.I., Kuypers, F.A.: Modeling and rapid simulation of multiple red blood cell light scattering. Proc. R. Soc. Interface 3(11), 823–831 (2006)CrossRefGoogle Scholar
  20. 20.
    Zohdi, T.I.: Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput. Method. Appl. Mech. Eng. 195, 5813–5830 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Method. Appl. Mech. Eng. 196, 3927–3950 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Method. Eng. 76, 1250–1279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Method. Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zohdi, T.I.: Charged wall-growth in channel-flow. Int. J. Eng. Sci. 48, 1520 (2010)Google Scholar
  25. 25.
    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Method. Eng. 17(2), 109–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zohdi, T.I., Kuypers, F.A., Lee, W.C.: Estimation of Red Blood Cell volume fraction from overall permittivity measurement. Int. J. Eng. Sci. 48, 1681–1691 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Method. Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Method. Eng. 85, 1140–1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zohdi, T.I.: Joule-heating field phase-amplification in particulate-doped dielectrics. Int. J. Eng. Sci. 49, 30–40 (2011)CrossRefGoogle Scholar
  30. 30.
    Zohdi, T.I.: Estimation of electrical-heating load-shares for sintering of powder mixtures. Proc. R. Soc. 468, 2174–2190 (2012)CrossRefGoogle Scholar
  31. 31.
    Zohdi, T.I.: Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput. Mech. 50(2), 257–268 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zohdi, T.I.: On the reduction of heat generation in lubricants using microscale additives. Int. J. Eng. Sci. 62, 84–89 (2013)CrossRefGoogle Scholar
  33. 33.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)CrossRefGoogle Scholar
  35. 35.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Method. Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  36. 36.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)Google Scholar
  37. 37.
    Zohdi, T.I.: On cross-correlation between thermal gradients and electric fields. Int. J. Eng. Sci. 74, 143–150 (2014)CrossRefGoogle Scholar
  38. 38.
    Zohdi, T.I.: A computational modeling framework for heat transfer processes in laser-induced dermal tissue removal. Comput. Mech. Eng. Sci. 98(3), 261–277 (2014)Google Scholar
  39. 39.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  40. 40.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  41. 41.
    Zohdi, T.I.: Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J. Manuf. Sci. Eng. ASME MANU-14-1476 (2015). https://doi.org/10.1115/1.4029327
  42. 42.
    Zohdi, T.I.: A computational modelling framework for high-frequency particulate obscurant cloud performance. Int. J. Eng. Sci. 89, 75–85 (2015)CrossRefGoogle Scholar
  43. 43.
    Zohdi, T.I.: On necessary pumping pressures for industrial process-driven particle-laden fluid flows. J. Manuf. Sci. Eng. ASME (2015). https://doi.org/10.1115/1.4030620
  44. 44.
    Zohdi, T.I.: On the thermal response of a laser-irradiated powder particle in additive manufacturing. CIRP J. Manuf. Sci. Technol. 10, 7783 (2015)Google Scholar
  45. 45.
    Zohdi, T.I.: Modeling and simulation of the post-impact trajectories of particles in oblique precision shot-peening. Comput. Part. Mech. (2015). https://doi.org/10.1007/s40571-015-0048-5
  46. 46.
    Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012
  48. 48.
    Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Method. Eng. 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1
  49. 49.
    Zohdi, T.I., Wriggers, P.: Introduction to computational micromechanics. Springer, Second Reprinting (Peer Reviewed) (2005, 2008)Google Scholar
  50. 50.
    Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)CrossRefGoogle Scholar
  51. 51.
    Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171–176 (2004)CrossRefGoogle Scholar
  52. 52.
    Huang, D., Liao, F., Molesa, S., Redinger, D., Subramanian, V.: Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412–417 (2003)CrossRefGoogle Scholar
  53. 53.
    Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)CrossRefGoogle Scholar
  54. 54.
    Choi, S., Pisano, A.P., Zohdi, T.I.: An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets. J. Thin Solid Films 537(30), 180–189 (2013)CrossRefGoogle Scholar
  55. 55.
    Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phys. Lett. 99, 253102-1–253102-3 (2012)Google Scholar
  56. 56.
    Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir, 412–417 (2010)Google Scholar
  57. 57.
    Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14), 11690–11698 (2010)CrossRefGoogle Scholar
  58. 58.
    Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu., M.C., Pisano, A.P.: Fast, high-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–3111 (2012)Google Scholar
  59. 59.
    Park, J.-U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Strano, M.S., Alleyne, A.G., Georgiadis, J.G., Ferreira, P.M., Rogers, J.A.: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007)CrossRefGoogle Scholar
  60. 60.
    Ko, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Luscombe, C.K., Frechet, J.M.J.: Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nan Lett. 7, 1869–1877 (2007)CrossRefGoogle Scholar
  61. 61.
    Ko, S.H., Park, I., Pan, H., Misra, N., Rogers, M.S., Grigoropoulos, C.P., Pisano, A.P.: ZnO nanowire network transistor fabrication by lowtemperature, allinorganic nanoparticle solution process. Appl. Phys. Lett. 92, 154102 (2008)CrossRefGoogle Scholar
  62. 62.
    Park, I., Ko, S.H., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Frechet, J.M.J., Lee, E.S., Jeong, J.H.: Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles. Adv. Mater. 20, 489 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations