Advertisement

DEM Extensions: Acoustical Pre-Processing

  • Tarek I. ZohdiEmail author
Chapter
  • 1.6k Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 60)

Abstract

In numerous industries, particle-laden fluids are a key part of the fabrication of products such as (1) casted machine parts, (2) additively manufactured and 3D printed electronics and medical devices, and even (3) slurry processed food to name a few.

Keywords

Particle-laden Fluid Cast Machine Parts Pulse Cross Section Finite Difference Time Domain Method Continuum-based Methods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)CrossRefGoogle Scholar
  2. 2.
    Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14), 11690–11698 (2010)CrossRefGoogle Scholar
  3. 3.
    Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu., M.C., Pisano, A.P.: Fast, High-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–3111 (2012)Google Scholar
  4. 4.
    Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phys. Lett. 99, 253102-1–253102-3 (2012)Google Scholar
  5. 5.
    Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 412–417 (2010)Google Scholar
  6. 6.
    Martin, P.: Handbook of Deposition Technologies for Films and Coatings, 3rd edn. Elsevier (2009)Google Scholar
  7. 7.
    Martin, P.: Introduction to Surface Engineering and Functionally Engineered Materials. Scrivener and Elsevier (2011)Google Scholar
  8. 8.
    Wei, C., Dong, J.: Development and modeling of melt electrohydrodynamic-jet printing of phase-change inks for high-resolution additive manufacturing. J. Manuf. Sci. Eng. 136, 061010 (2014). Paper no: MANU-14-1179. https://doi.org/10.1115/1.4028483
  9. 9.
    Duran, J.: Sands, Powders and Grains: An Introduction to the Physics of Granular Matter. Springer (1997)Google Scholar
  10. 10.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Onate, E., Idelsohn, S.R., Celigueta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 197(19–20), 1777–1800 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Onate, E., Celigueta, M.A., Idelsohn, S.R., Salazar, F., Surez, B.: Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48, 307–318 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rojek, J., Labra, C., Su, O., Onate, E.: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int. J. Solids Struct. 49, 1497–1517 (2012). https://doi.org/10.1016/j.ijsolstr.2012.02.032
  14. 14.
    Carbonell, J.M., Onate, E., Suarez, B.: Modeling of ground excavation with the particle finite element method. J. Eng. Mech. ASCE 136, 455–463 (2010)CrossRefGoogle Scholar
  15. 15.
    Labra, C., Onate, E.: High-density sphere packing for discrete element method simulations. Commun. Numer. Methods Eng. 25(7), 837–849 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J.: Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions. Comput. Part. Mech. 1(1), 3–13 (2014)CrossRefGoogle Scholar
  17. 17.
    Cante, J., Davalos, C., Hernandez, J.A., Oliver, J., Jonsen, P., Gustafsson, G., Haggblad, H.A.: PFEM-based modeling of industrial granular flows. Comput. Part. Mech. 1(1), 47–70 (2014)CrossRefGoogle Scholar
  18. 18.
    Rojek, J.: Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput. Part. Mech. 1(1), 71–84 (2014)CrossRefGoogle Scholar
  19. 19.
    Onate, E., Celigueta, M.A., Latorre, S., Casas, G., Rossi, R., Rojek, J.: Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput. Part. Mech. 1(1), 85–102 (2014)CrossRefGoogle Scholar
  20. 20.
    Bolintineanu, D.S., Grest, G.S., Lechman, J.B., Pierce, F., Plimpton, S.J., Schunk, P.R.: Particle dynamics modeling methods for colloid suspensions. Comput. Part. Mech. 1(3), 321–356 (2014)CrossRefGoogle Scholar
  21. 21.
    Avci, B., Wriggers, P.: A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J. Appl. Mech. 79(1–7), 010901 (2012)CrossRefGoogle Scholar
  22. 22.
    Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlinear Mech. 39, 281–297 (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193(6–8), 679–699 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zohdi, T.I.: Charge-induced clustering in multifield particulate flow Int. J. Numer. Methods Eng. 62(7), 870–898 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zohdi, T.I.: On the optical thickness of disordered particulate media. Mech. Mater. 38, 969–981 (2006)CrossRefGoogle Scholar
  27. 27.
    Zohdi, T.I., Kuypers, F.A.: Modeling and rapid simulation of multiple red blood cell light scattering. Proc. R. Soc. Interface 3(11), 823–831 (2006)CrossRefGoogle Scholar
  28. 28.
    Zohdi, T.I.: Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput. Methods Appl. Mech. Eng. 195, 5813–5830 (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Methods Appl. Mech. Eng. 196, 3927–3950 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Methods Eng. 76, 1250–1279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zohdi, T.I., Kuypers, F.A., Lee, W.C.: Estimation of red blood cell volume fraction from overall permittivity measurement. Int. J. Eng. Sci. 48, 1681–1691 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199, 79–101 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Methods Eng. 85, 1140–1159 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zohdi, T.I.: Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput. Mech. 50(2), 257–268 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)CrossRefGoogle Scholar
  39. 39.
    Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)CrossRefGoogle Scholar
  40. 40.
    Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)CrossRefGoogle Scholar
  41. 41.
    Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)CrossRefzbMATHGoogle Scholar
  42. 42.
    Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)CrossRefGoogle Scholar
  43. 43.
    Zohdi, T.I.: A computational modelling framework for high-frequency particulate obscurant cloud performance. Int. J. Eng. Sci. 89, 75–85 (2015)CrossRefGoogle Scholar
  44. 44.
    Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012
  46. 46.
    Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Methods Eng. 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1
  47. 47.
    Zohdi, T.I.: A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations. Comp. Mech. https://doi.org/10.1007/s0046-015-1256-2
  48. 48.
    Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics. Springer, Second Reprinting (Peer Reviewed) (2005)CrossRefzbMATHGoogle Scholar
  49. 49.
    Markov, K.Z.: Elementary micromechanics of heterogeneous media. In: Markov, K.Z., Preziozi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhauser, Boston (2000)CrossRefGoogle Scholar
  50. 50.
    Virovlyanskii, A.L.: Interrelation between ray and mode field representations in an acoustic waveguide. Radiophys. Quant. Electron. 38, 76 (1995)CrossRefGoogle Scholar
  51. 51.
    Borejko, P., Chen, C.F., Pao, Y.H.: Application of the method of generalized rays to acoustic waves in a liquid wedge over elastic bottom. J. Comput. Acoust. 9, 41–68 (2011)CrossRefGoogle Scholar
  52. 52.
    Aurich, J.C., Dornfeld, D.A.: Burrs—analysis, control and removal. In: Jan Aurich, C., David, A. (eds.) Proceedings of the CIRP International. Springer, Dornfeld (2010)Google Scholar
  53. 53.
    Garg, S., Dornfeld, D., Berger, K.: Formulation of the chip cleanability mechanics from fluid transport. In: Aurich, J.C., Dornfeld, D.A. (eds.) Burrs Analysis, Control and Removal, pp. 229–236. Springer, Germany (2010)CrossRefGoogle Scholar
  54. 54.
    Avila, M., Gardner, J., Reich-Weiser, C., Tripathi, S., Vijayaraghavan, A., Dornfeld, D.A.: Strategies for Burr minimization and cleanability in aerospace and automotive manufacturing. SAE Tech. (2005). Paper 2005-01-3327. https://doi.org/10.4271/2005-01-3327
  55. 55.
    Avila, M. Reich-Weiser, C., Dornfeld, D.A., McMains, S.: Design and manufacturing for cleanability in high performance cutting. In: CIRP 2nd International Conference on High Performance Cutting, Vancouver, BC, June 2006, Paper number 63 (2006)Google Scholar
  56. 56.
    Luo, L., Dornfeld, D.A.: Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans. Semicond. Manuf. 14(2), 112–133 (2001)CrossRefGoogle Scholar
  57. 57.
    Luo, L., Dornfeld, D.A.: Effects of abrasive size distribution in chemical-mechanical planarization: modeling and verification. IEEE Trans. Semicond. Manuf. 16, 469–476 (2003)CrossRefGoogle Scholar
  58. 58.
    Luo, L., Dornfeld, D.A.: Material removal regions in chemical mechanical planarization for sub-micron integration for sub-micron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Trans. Semicond. Manuf. 16, 45–56 (2003)CrossRefGoogle Scholar
  59. 59.
    Luo, L., Dornfeld, D.A.: Integrated Modeling of Chemical Mechanical Planarization of Sub-micron IC Fabrication. Springer (2004)Google Scholar
  60. 60.
    Arbelaez, D., Zohdi, T.I., Dornfeld, D.: Modeling and simulation of material removal with particulate flow. Comput. Mech. 42, 749–759 (2008)CrossRefzbMATHGoogle Scholar
  61. 61.
    Arbelaez, D., Zohdi, T.I., Dornfeld, D.: On impinging near-field granular jets. Int. J. Numer. Methods Eng. 80(6), 815–845 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Campello, E.M.B., Zohdi, T.I.: A computational framework for simulation of the delivery of substances into cells. Int. J. Numer. Methods Biomed. Eng. 30(11), 1132–1152 (2014)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Campello, E.M.B., Zohdi, T.I.: Design evaluation of a particle bombardment system to deliver substances into cells. Comput. Mech. Eng. Sci. 98(2), 221–245 (2014)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Gomes-Ferreira, C., Ciampini, D., Papini, M.: The effect of inter-particle collisions in erosive streams on the distribution of energy flux incident to a flat surface. Tribol. Int. 37, 791–807 (2004)CrossRefGoogle Scholar
  65. 65.
    Ghobeity, A., Spelt, J.K., Papini, M.: Abrasive jet micro-machining of planar areas and transitional slopes. J. Micromech. Microeng. 18, 055014 (2008)CrossRefGoogle Scholar
  66. 66.
    Ghobeity, A., Krajac, T., Burzynski, T., Papini, M., Spelt, J.K.: Surface evolution models in abrasive jet micromachining. Wear 264, 185–198 (2008)CrossRefGoogle Scholar
  67. 67.
    Afazov, S.M., Becker, A.A., Hyde, T.H.: Mathematical modeling and implementation of residual stress mapping from microscale to macroscale finite element models. J. Manuf. Sci. Eng. 134(2), 021001-021001-11 (2012)Google Scholar
  68. 68.
    Bagherifard, S., Giglio, M., Giudici, L., Guagliano, M.: Experimental and numerical analysis of fatigue properties improvement in a titanium alloy by shot peening. In: Proceedings of the ASME. 49163; ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, vol. 2, pp. 317–322 (2010)Google Scholar
  69. 69.
    Elbella, A., Fadul, F., Uddanda, S.H., Kasarla, N.R.: Influence of shot peening parameters on process effectiveness. In: Proceedings of the ASME. 45196; Volume 3: Design, Materials and Manufacturing, Parts A, B, and C: 2015–2021 (2012)Google Scholar
  70. 70.
    Chen, Z., Yang, F., Meguid, S.A.: Realistic finite element simulations of arc-height development in shot-peened Almen strips. J. Eng. Mater. Technol. 136(4), 041002-041002-7 (2014)Google Scholar
  71. 71.
    Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44, 3888–3894 (1966)CrossRefGoogle Scholar
  72. 72.
    Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E. 66, 041109 (2002)CrossRefGoogle Scholar
  73. 73.
    Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 13(303), 990–993 (2004)CrossRefGoogle Scholar
  74. 74.
    Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal ellipsoid packings. Phys. Rev. Lett. 92, 255506 (2004)CrossRefGoogle Scholar
  75. 75.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I: Algorithmic details. J. Comput. Phys. 202, 737 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II: Application to ellipses and ellipsoids. J. Comput. Phys. 202, 765 (2005)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Donev, A., Torquato, S., Stillinger, F.H.: Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E 71, 011105 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations