Advertisement

Electronic States of Iodine Molecule and Optical Transitions Between Them

  • Sergey Lukashov
  • Alexander Petrov
  • Anatoly Pravilov
Chapter

Abstract

The chapter outlines arrays of the valence, ion-pair (IP) and Rydberg states of the iodine molecule. At the outset, a molecular orbital theory used for descriptions of the valence and IP states, pure precession model utilized for the IP states, and the describing of the Rydberg states are defined. Then, the valence states and valence-valence transitions, as well as the IP states and IP – valence transitions are described in details. Data given in this Chapter will be used for descriptions of intra- and intermolecular perturbation described in Chaps.  4,  5 and  6.

Keywords

Iodine molecule valence states Ion-pair states Rydberg states Optical transition Transition dipole moment Asymptotic model 

References

  1. 1.
    Mulliken, R.S.: Iodine revisited. J. Chem. Phys. 55, 288–309 (1971). https://doi.org/10.1063/1.1675521 ADSCrossRefGoogle Scholar
  2. 2.
    de Jong, W.A., Visscher, L., Nieuwpoort, W.C.: Relativistic and correlated calculations on the ground, excited, and ionized states of iodine. J. Chem. Phys. 107, 9046–9058 (1997). https://doi.org/10.1063/1.475194 ADSCrossRefGoogle Scholar
  3. 3.
    Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure. Springer, Boston (1979)CrossRefGoogle Scholar
  4. 4.
    Tellinghuisen, J.: Resolution of the visible-infrared absorption spectrum of I2 into three contributing transitions. J. Chem. Phys. 58, 2821–2834 (1973). https://doi.org/10.1063/1.1679584 ADSCrossRefGoogle Scholar
  5. 5.
    Tellinghuisen, J.: Transition strengths in the visible–infrared absorption spectrum of I2. J. Chem. Phys. 76, 4736–4744 (1982). https://doi.org/10.1063/1.442791 ADSCrossRefGoogle Scholar
  6. 6.
    Li, J., Balasubramanian, K.: Spectroscopic properties and potential energy curves of I2 and \( {\mathrm{I}}_2^{+} \). J. Mol. Spectrosc. 138, 162–180 (1989). https://doi.org/10.1016/0022-2852(89)90108-2 ADSCrossRefGoogle Scholar
  7. 7.
    Jewsbury, P., Lawley, K.P.: A model for the relative intensities among ion pair → valence transitions in the heavier halogens and rare gas halides. Chem. Phys. 141, 225–239 (1990). https://doi.org/10.1016/0301-0104(90)87058-J ADSCrossRefGoogle Scholar
  8. 8.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (3rd Edn, Revised and Enlarged). Pergamon, Oxford (1977)Google Scholar
  9. 9.
    Lawley, K.P.: Dispersion and polarization forces associated with the ion-pair states of diatomic molecules. Chem. Phys. 127, 363–371 (1988). https://doi.org/10.1016/0301-0104(88)87134-9 ADSCrossRefGoogle Scholar
  10. 10.
    Cockett, M.C.R., Donovan, R.J., Lawley, K.P.: Zero kinetic energy pulsed field ionization (ZEKE-PFI) spectroscopy of electronically and vibrationally excited states of \( {\mathrm{I}}_2^{+} \): The A2Π3/2,u state and a new electronic state, the a 4Σ u state. J. Chem. Phys. 105, 3347–3360 (1996). https://doi.org/10.1063/1.472535 ADSCrossRefGoogle Scholar
  11. 11.
    Gerstenkorn, S., Luc, P., Vergės, J.: Atlas du spectre d’absorption de la molécule d’iode, Vol. O. 7220–11,200 cm−1. Laboratoire Aime´ Cotton. CNRS II, Orsay (1993)Google Scholar
  12. 12.
    Gerstenkorn, S., Vergės, J., Chevilard, J.: Atlas du spectre d’absorption de la molėcule d’iode (11000–14,000 cm−1). Edition CNRS II, Orsay (1982)Google Scholar
  13. 13.
    Appadoo, D.R.T., Le Roy, R.J., Bernath, P.F., Gerstenkorn, S., Luc, P., Verges, J., Sinzelle, J., Chevillard, J., D’Aignaux, Y., Vergès, J., Sinzelle, J., Chevillard, J., D’Aignaux, Y.: Comprehensive analysis of the A–X spectrum of I2: an application of near-dissociation theory. J. Chem. Phys. 104, 903–913 (1996). https://doi.org/10.1063/1.470814 ADSCrossRefGoogle Scholar
  14. 14.
    Beeken, P.B., Hanson, E.A., Flynn, G.W.: Photochemical and photophysical dynamics of I2 isolated in a rare gas cage. J. Chem. Phys. 78, 5892–5899 (1983). https://doi.org/10.1063/1.444609 ADSCrossRefGoogle Scholar
  15. 15.
    Tellinghuisen, J., Phillips, L.F.: Kinetics of iodine following photolysis at 1930 Å: temperature dependence of A -state quenching. J. Phys. Chem. 90, 5108–5120 (1986). https://doi.org/10.1021/j100412a046 CrossRefGoogle Scholar
  16. 16.
    Tellinghuisen, J.: Least-squares analysis of overlapped bound-free absorption spectra and predissociation data in diatomics: The C(1Πu) state of I2. J. Chem. Phys. 135(54), 301–311 (2011). https://doi.org/10.1063/1.3616039 Google Scholar
  17. 17.
    Tellinghuisen, J.: Intensity analysis of overlapped discrete and continuous absorption by spectral simulation: The electronic transition moment for the B–X system in I2. J. Chem. Phys. 134(84), 301–308 (2011). https://doi.org/10.1063/1.3555623 Google Scholar
  18. 18.
    Gerstenkorn, S., Luc, P.: Atlas du spectre d’absorption de la molcule d’iode (15600–20,000 cm−1). Editions CNRS, Paris (1977)Google Scholar
  19. 19.
    Gerstenkorn, S., Luc, P.: Atlas du spectre d’absorption de la molécule d’iode (14000–15,600 cm−1). CNRS II, Orsay (1980)Google Scholar
  20. 20.
    Salami, H., Ross, A.J.: A molecular iodine atlas in ascii format. J. Mol. Spectrosc. 233, 157–159 (2005). https://doi.org/10.1016/j.jms.2005.06.002 ADSCrossRefGoogle Scholar
  21. 21.
    Gerstenkom, S., Luc, P.: Description of the absorption spectrum of iodine recorded by means of Fourier Transform Spectroscopy: the (B-X) system. J. Phys. 46, 867–881 (1985). https://doi.org/10.1051/jphys:01985004606086700 CrossRefGoogle Scholar
  22. 22.
    Martin, F., Bacis, R., Churassy, S., Vergès, J.: Laser-induced-fluorescence Fourier transform spectrometry of the \( \mathrm{X}{0}_g^{+} \)state of I2: extensive analysis of the \( \mathrm{B}{0}_u^{+}\to \mathrm{X}{0}_g^{+} \) fluorescence spectrum of 127I2. J. Mol. Spectrosc. 116, 71–100 (1986). https://doi.org/10.1016/0022-2852(86)90254-7 ADSCrossRefGoogle Scholar
  23. 23.
    Barrow, R.F., Yee, K.K.: \( \mathrm{B}{0}_u^{+}-\mathrm{X}{0}_g^{+} \) system of 127I2: rotational analysis and long-range potential in the \( \mathrm{B}{0}_u^{+} \) state. J. Chem. Soc. Faraday Trans. 2(69), 684–700 (1973). https://doi.org/10.1039/F29736900684 CrossRefGoogle Scholar
  24. 24.
    Levenson, M.D.M., Schawlow, A.L.: Hyperfine interactions in molecular iodine. Phys. Rev. A. 6, 10–20 (1972). https://doi.org/10.1103/PhysRevA.6.10 ADSCrossRefGoogle Scholar
  25. 25.
    Okabe, H.: Photochemistry of Small Molecules. Wiley, New York (1978)Google Scholar
  26. 26.
    Pravilov, A.M.: Radiometry in Modern Scientific Experiments. Springer, Vienna/New York (2011)CrossRefGoogle Scholar
  27. 27.
    Kobayashi, T., Akamatsu, D., Hosaka, K., Inaba, H., Okubo, S., Tanabe, T., Yasuda, M., Onae, A., Hong, F.-L.: Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm. J. Opt. Soc. Am. B. 33, 725–734 (2016). https://doi.org/10.1364/JOSAB.33.000725 ADSCrossRefGoogle Scholar
  28. 28.
    Vigué, J., Broyer, M., Lehmann, J.C.: Natural hyperfine and magnetic predissociation of the I2 B state III. — Experiments on magnetic predissociation. J. Phys. 42, 961–978 (1981). https://doi.org/10.1051/jphys:01981004207096100 CrossRefGoogle Scholar
  29. 29.
    Tamres, M., Duerksen, W.K., Goodenow, J.M.: Vapor-phase charge-transfer complexes. II. 2I2 ↔ I4 system. J. Phys. Chem. 72, 966–970 (1968). https://doi.org/10.1021/j100849a030 CrossRefGoogle Scholar
  30. 30.
    Clear, R.D., Wilson, K.R.: Assignment of continuous spectra by photofragment spectroscopy: C state of I2. J. Mol. Spectrosc. 47, 39–44 (1973). https://doi.org/10.1016/0022-2852(73)90074-X ADSCrossRefGoogle Scholar
  31. 31.
    Teichteil, C., Pelissier, M., et al.: Chem. Phys. 180, 1–18 (1994). https://doi.org/10.1016/0301-0104(93)E0395-C ADSCrossRefGoogle Scholar
  32. 32.
    Baturo, V.V., Cherepanov, I.N., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M.: Spectroscopic constants and potential energy curves of some iodine valence ungerade weakly bound states. J. Phys. B At. Mol. Opt. Phys. 48, 055101. (8 pp) (2015). https://doi.org/10.1088/0953-4075/48/5/055101 ADSCrossRefGoogle Scholar
  33. 33.
    Churassy, S., Martin, F., Bacis, R., Vergès, J., Field, R.W.: Rotation–vibration analysis of the \( \mathrm{B}{0}_u^{+} \) → a1g and \( \mathrm{B}{0}_u^{+}\to {\mathrm{a}}^{\prime }{0}_g^{+} \) electronic systems of I2 by laser-induced-fluorescence Fourier-transform spectroscopy. J. Chem. Phys. 75, 4863–4868 (1981). https://doi.org/10.1063/1.441923
  34. 34.
    Martin, F., Churassy, S., Bacis, R., Field, R.W., Vergès, J., Vergès, J.: Long range behavior of the gerade states near the 2P3/2 + 2P3/2 iodine dissociation limit by laser-induced-fluorescence Fourier-transform spectroscopy. J. Chem. Phys. 79, 3725–3737 (1983). https://doi.org/10.1063/1.446293 ADSCrossRefGoogle Scholar
  35. 35.
    Akopyan, M.E., Baturo, V.V., Lukashov, S.S., Mikheev, L.D., Poretsky, S.A., Pravilov, A.M., Vasyutinskii, O.S.: Hyperfine interaction in molecular iodine between the \( {0}_g^{+} \), 1u and –states correlating with the I(2P1/2) + I(2P1/2) dissociation limit. J. Phys. B At. Mol. Opt. Phys. 48, 25102. (14 pp) (2015). https://doi.org/10.1088/0953-4075/48/2/025102 CrossRefGoogle Scholar
  36. 36.
    Akopyan, M.E., Baturo, V.V., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M., Teschmit, N.: Cross-sections of bound-free (\( {0}_g^{+} \),1g (aa, ab) \( \overset{h{\nu}_f}{\leftarrow}\mathrm{B}{0}_u^{+} \),vB = 18–21) and bound-bound I2(\( {0}_g^{+} \), 1u(bb) ← \( \overset{h{\nu}_f}{\leftarrow}\mathrm{B}{0}_u^{+} \),vB = 21,JB). J. Phys. B At. Mol. Opt. Phys. 47, 055101. (9 pp) (2014). https://doi.org/10.1088/0953-4075/47/5/055101 ADSCrossRefGoogle Scholar
  37. 37.
    Mulliken, R.S.: The halogen molecules and their spectra. J-J-like coupling. Molecular ionization potentials. Phys. Rev. 46, 549–571 (1934). https://doi.org/10.1103/PhysRev.46.549 ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Watanabe, K.: Ionization potentials of some molecules. J. Chem. Phys. 26, 542–547 (1957). https://doi.org/10.1063/1.1743340 ADSCrossRefGoogle Scholar
  39. 39.
    Myer, J.A., Samson, J.A.R.: Absorption cross section and photoionization yield of I2 between 1050 and 2200 Å. J. Chem. Phys. 52, 716–718 (1970). https://doi.org/10.1063/1.1673044 ADSCrossRefGoogle Scholar
  40. 40.
    Akopyan, M.E., Vilesov, F.I., Sergeev, Y.L.: Photoionization of molecular iodine. Opt. Spectrosc.. (USSR, Eng.transl.) 35, 472–477 (1973)Google Scholar
  41. 41.
    Road, W.M., Lawley, K., Jewsbury, P., Ridley, T., Langridge-Smith, P., Donovan, R.: Einstein A-coefficients and transition dipole moments for some ion-pair to valence transitions in I2. Mol. Phys. 75, 811–828 (1992). https://doi.org/10.1080/00268979200100621 ADSCrossRefGoogle Scholar
  42. 42.
    Bartels, M., Donovan, R.J., Holmes, A.J., Langridge-Smith, P.R.R., MacDonald, M.A., Ridley, T.: Tunable vacuum ultraviolet laser spectroscopy of the \( \mathrm{D}{0}_u^{+} \) ion-pair state of jet-cooled I2. J. Chem. Phys. 91, 7355–7360 (1989). https://doi.org/10.1063/1.457258 ADSCrossRefGoogle Scholar
  43. 43.
    Hoy, A.R., Lipson, R.H.: Reinvestigation of the Cordes band system of I2 using a vacuum ultraviolet laser. Chem. Phys. 140, 187–193 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    Ishiwata, T., Tanaka, I.: A Spectroscopic study of the \( \mathrm{D}{0}_u^{+} \) ion-pair state of I2 by optical–optical double resonance. Laser Chem. 7, 79–93 (1987). https://doi.org/10.1155/LC.7.79 CrossRefGoogle Scholar
  45. 45.
    Akopyan, M.E., Baturo, V.V., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M.: Dipole moment functions of the iodine D′2g–A′2u, \( \mathrm{D}{0}_u^{+}-{\mathrm{a}}^{\prime }{0}_g^{+} \), \( \mathrm{D}{0}_u^{+}-\mathrm{X}{0}_g^{+} \) and \( \mathrm{E}{0}_g^{+}-\mathrm{B}{0}_u^{+} \) transitions. J. Phys. B At. Mol. Opt. Phys. 44, 205101. (9 pp) (2011). https://doi.org/10.1088/0953-4075/44/20/205101 ADSCrossRefGoogle Scholar
  46. 46.
    Nowlin, M.L., Heaven, M.C.: Improved spectroscopic constants for I2 D \( {}^1{\varSigma}_u^{+} \). Chem. Phys. Lett. 239, 1–5 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    Tellinghuisen, J.: The D state of I2: A case study of statistical error propagation in the computation of RKR potential curves, spectroscopic constants, and Frank-Condon factors. J. Mol. Spectrosc. 217, 212–221 (2003). https://doi.org/10.1016/S0022-2852(02)00055-3 ADSCrossRefGoogle Scholar
  48. 48.
    Kalemos, A., Valdes, A., Prosmiti, R.: An ab Initio Study of the E 3Πg State of the Iodine Molecule. J. Phys. Chem. A. 116, 2366–2370 (2012). https://doi.org/10.1021/jp3000202 CrossRefGoogle Scholar
  49. 49.
    Wilson, P.J., Ridley, T., Lawley, K.P., Donovan, R.J.: Double resonance ionisation nozzle cooled spectroscopy (DRINCS) of the E(3P2), f(3P0) and f′(1D2) \( {0}_g^{+} \)ion-pair states of I2. Chem. Phys. 182, 325–339 (1994). https://doi.org/10.1016/0301-0104(94)00047-6 ADSCrossRefGoogle Scholar
  50. 50.
    Inard, D., Cerny, D., Nota, M., Bacis, R., Churassy, S., Skorokhodov, V.: \( \mathrm{E}{0}_g^{+}\to \mathrm{A}{1}_{\mathrm{u}} \) and \( \mathrm{E}{0}_g^{+}\to {\mathrm{B}}^{{\prime\prime} }{1}_{\mathrm{u}} \) laser-induced fluorescence in molecular iodine recorded by Fourier-transform spectroscopy. Chem. Phys. 243, 305–321 (1999). https://doi.org/10.1016/S0301-0104(99)00077-4 ADSCrossRefGoogle Scholar
  51. 51.
    Brand, J.C.D., Hoy, A.R.: Multiphoton Spectra and States of Halogens. Appl. Spectrosc. Rev. 23, 285–328 (1987). https://doi.org/10.1080/05704928708060449 ADSCrossRefGoogle Scholar
  52. 52.
    Brand, J.C.D., Hoy, A.R., Kalkar, A.K., Yamashita, A.B.: The E-B band system of diatomic iodine. J. Mol. Spectrosc. 95, 350–358 (1982). https://doi.org/10.1016/0022-2852(82)90134-5 ADSCrossRefGoogle Scholar
  53. 53.
    Perrot, J.P., Broyer, M., Chevaleyre, J., Femelat, B.: Extensive study of the 1g(3P2) ion pair state of I2. J. Mol. Spectrosc. 98, 161–167 (1983). https://doi.org/10.1016/0022-2852(83)90211-4 ADSCrossRefGoogle Scholar
  54. 54.
    Perrot, J.P.P., Femelat, B., Broyer, M., Chevaleyre, J.: Ω-doubling in 1g state and electronic transition moments for \( \mathrm{B}{0}_u^{+} \) towards \( {0}_g^{+} \)and 1g(3P2) states of iodine. Mol. Phys. 61, 97–108 (1987). https://doi.org/10.1080/00268978700101011 ADSCrossRefGoogle Scholar
  55. 55.
    Perrot, J.P., Femelat, B., Subtil, J.L., Broyer, M., Chevaleyre, J.: Electronic transitions moments from both fluorescence intensities and lifetime measurements for transitions involving the I2 ionic states. Mol. Phys. 61, 85–95 (1987). https://doi.org/10.1080/00268978700101001 ADSCrossRefGoogle Scholar
  56. 56.
    Zheng, X., Fei, S., Heaven, M.C., Tellinghuisen, J.: Observation and analysis of the β ← A transition of I2 in a free-jet expansion. J. Mol. Spectrosc. 149, 399–411 (1991). https://doi.org/10.1016/0022-2852(91)90295-L ADSCrossRefGoogle Scholar
  57. 57.
    Ishiwata, T., Motohiro, S., Kagi, E., Fujiwara, H., Fukushima, M.: Optical-optical double-resonance spectroscopy of the 1u(3P2) and 2u(3P2) states of I2 through the A3Π(1u) state. Bull. Chem. Soc. Jpn. 73, 2255–2261 (2000). https://doi.org/10.1246/bcsj.73.2255 CrossRefGoogle Scholar
  58. 58.
    King, G.W., Littlewood, I.M., Robins, J.R.: Two-photon sequential absorption spectroscopy of iodine-127 and 129 in the 5 eV region. Chem. Phys. 56, 145–156 (1981)ADSCrossRefGoogle Scholar
  59. 59.
    Jewsbury, P.J., Ridley, T., Lawley, K.P., Donovan, R.J.: Parity mixing in the valence states of I2 probed by optical-optical double-resonance excitation of ion-pair. J. Mol. Spectrosc. 157, 33–49 (1993). https://doi.org/10.1006/jmsp.1993.1003 ADSCrossRefGoogle Scholar
  60. 60.
    Ishiwata, T., Yotsumoto, T., Motohiro, S.: Optical–optical double resonance spectroscopy of I2 through the parity mixed valence states. Bull. Chem. Soc. Jpn. 74, 1605–1610 (2001). https://doi.org/10.1246/bcsj.74.1605 CrossRefGoogle Scholar
  61. 61.
    Tellinghuisen, J.: The D′ → A′ transition in I2. J. Mol. Spectrosc. 94, 231–252 (1982). https://doi.org/10.1016/0022-2852(82)90002-9 ADSCrossRefGoogle Scholar
  62. 62.
    Zheng, X., Fei, S., Heaven, M.C., Tellinghuisen, J.: Spectroscopy of metastable species in a free-jet expansion: The D’ ← A’ transition of I2. J. Chem. Phys. 96, 4877–4883 (1992). https://doi.org/10.1063/1.462895 ADSCrossRefGoogle Scholar
  63. 63.
    Hoy, A.R., Brand, J.C.D.: The \( \mathrm{F}{0}_u^{+} \) state of diatomic iodine: effects of configuration interaction. Chem. Phys. 109, 109–115 (1986). https://doi.org/10.1016/0301-0104(86)80189-6 ADSCrossRefGoogle Scholar
  64. 64.
    Ishiwata, T., Kusayanagi, T., Hara, T., Tanaka, I.: An analysis of the \( \mathrm{F}\left({0}_u^{+}\right) \) ion-pair state of I2 by optical-optical double resonance. J. Mol. Spectrosc. 119, 337–351 (1986). https://doi.org/10.1016/0022-2852(86)90029-9 ADSCrossRefGoogle Scholar
  65. 65.
    Ishiwata, T., Tokunaga, A., Shinzawa, T., Tanaka, I.: An analysis of the \( {\mathrm{F}}^{\prime }{0}_u^{+} \) ion-pair state of I2 by optical-optical double resonance. J. Mol. Spectrosc. 117, 89–101 (1986). https://doi.org/10.1016/0022-2852(86)90094-9 ADSCrossRefGoogle Scholar
  66. 66.
    Ishiwata, T., Yamada, J., Obi, K.: Optical-optical double-resonance spectroscopy of the I2 \( {0}_g^{+} \)(1D) ion-pair state. J. Mol. Spectrosc. 158, 237–245 (1993). https://doi.org/10.1006/jmsp.1993.1068 ADSCrossRefGoogle Scholar
  67. 67.
    Donovan, R.J., Flood, R.V., Lawley, K.P., Yencha, A.J., Ridley, T.: The resonance enhanced (2 + 1) multiphoton ionization spectrum of I2. Chem. Phys. 164, 439–450 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    Kagi, E., Yamamoto, N., Fujiwara, H., Fukushima, M., Ishiwata, T.: Optical–Optical Double Resonance Spectroscopy of the 1g(3P1)-A3Π(1u)-X1Σg + Transition of I2. J. Mol. Spectrosc. 216, 48–51 (2002). https://doi.org/10.1006/jmsp.2002.8676 ADSCrossRefGoogle Scholar
  69. 69.
    Ishiwata, T., Takekawa, H., Obi, K.: Optical-optical double-resonance spectroscopy of the I2 1g(1D) ion-pair state. J. Mol. Spectrosc. 159, 443–457 (1993). https://doi.org/10.1006/jmsp.1993.1141 ADSCrossRefGoogle Scholar
  70. 70.
    Baturo, V.V., Cherepanov, I.N., Lukashov, S.S., Poretsky, S.A., Pravilov, A.M., Zhironkin, A.I.: Heterogeneous and hyperfine interactions between valence states of molecular iodine correlating with the I(2P1/2) + I(2P1/2) dissociation limit. J. Chem. Phys. 144(184), 309–308 (2016). https://doi.org/10.1063/1.4948630 Google Scholar
  71. 71.
    Motohiro, S., Nakajima, S., Ishiwata, T.: Perturbation-facilitated optical-optical double resonance spectroscopy of the \( \mathrm{h}{0}_u^{-} \) (3P1) and H1u(3P1) ion-pair states of I2. J. Chem. Phys. 117, 187–196 (2002). https://doi.org/10.1063/1.1481391 ADSCrossRefGoogle Scholar
  72. 72.
    Motohiro, S., Umakoshi, A., Ishiwata, T.: Perturbation-facilitated optical–optical double-resonance spectroscopy of the 1u(1D) and 2u(1D) ion-pair states of I2 through the parity mixing intermediate state. J. Mol. Spectrosc. 208, 213–218 (2001). https://doi.org/10.1006/jmsp.2001.8379 ADSCrossRefGoogle Scholar
  73. 73.
    Motohiro, S., Ishiwata, T.: Optical–optical double resonance spectroscopy of the H1u(3P1)–A3Π1u–X1Σ+ g Transition of I2. J. Mol. Spectrosc. 204, 286–290 (2000). https://doi.org/10.1006/jmsp.2000.8229 ADSCrossRefGoogle Scholar
  74. 74.
    Motohiro, S., Nakajima, S., Aoyama, K., Kagi, E., Fujiwara, H., Fukushima, M., Ishiwata, T.: Analysis of the \( {0}_g^{-}\left({}^3{\mathrm{P}}_1\right)-{{\mathrm{B}}^{\prime}}^3\prod \left({0}_u^{-}\right) \) system of I2 by perturbation-facilitated optical–optical double resonance. J. Chem. Phys. 117, 9777–9784 (2002). https://doi.org/10.1063/1.1516790 ADSCrossRefGoogle Scholar
  75. 75.
    Nakano, Y., Ukeguchi, H., Ishiwata, T.: Observation and analysis of the 2g(1D) ion-pair state of I2: The g/u mixing between the 1u(1D) and 2g(1D) states. J. Chem. Phys. 121, 1397–1404 (2004). https://doi.org/10.1063/1.1756134 ADSCrossRefGoogle Scholar
  76. 76.
    Lawley, K.P., Ridley, T., Min, Z., Wilson, P.J., AlKahali, M.S.N., Donovan, R.J.: Vibronic coupling between Rydberg and ion-pair states of I2 investigated by (2 + 1) resonance enhanced multiphoton ionization spectroscopy. Chem. Phys. 197, 37–50 (1995)ADSCrossRefGoogle Scholar
  77. 77.
    Donovan, R.J., Lawley, K.P., Ridley, T.: Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens. J. Chem. Phys. 142, 1–10 (2015). https://doi.org/10.1063/1.4921560 CrossRefGoogle Scholar
  78. 78.
    Hiraya, A., Shobatake, K., Donovan, R.J., Hopkirk, A.: Vacuum ultraviolet fluorescence excitation spectrum of I2. J. Chem. Phys. 88, 52 (1988). https://doi.org/10.1063/1.454485 ADSCrossRefGoogle Scholar
  79. 79.
    Lukashov, S.S., Poretsky, S.A., Pravilov, A.M., Khadikova, E.I., Shevchenko, E.V.: Optical population of iodine molecule ion-pair states via MI2 vdW complexes, M = I2, Xe, of valence states correlating with the third, I(2P1/2) + I(2P1/2) dissociation limit. Opt. Spectrosc. (English Transl. Opt. i Spektrosk). 109, 493–501 (2010). https://doi.org/10.1134/S0030400X10100036 ADSCrossRefGoogle Scholar
  80. 80.
    Holmes, A.J., Lawley, K.P., Ridley, T., Donovan, R.J., Patrick, R.R.: Optical-Optical Double Resonance (OODR) studies of the Halogen ion-pair states. J. Chem. Soc. Fraday Trans. 87, 15–18 (1991). https://doi.org/10.1039/FT9918700015 CrossRefGoogle Scholar
  81. 81.
    Akopyan, M.E., Bibinov, N.K., Kokh, D.B., Pravilov, A.M., Stepanov, M.B.: The iodine \( E{0}_g^{+}-B{0}_u^{+} \) and \( D{0}_u^{+}-X{0}_g^{+} \) transition dipole moment functions. Chem. Phys. 242, 253–261 (1999). https://doi.org/10.1016/S0301-0104(99)00002-6 ADSCrossRefGoogle Scholar
  82. 82.
    Venkateswarlu, P.: Vacuum ultraviolet spectrum of the iodine molecule. Can. J. Phys. 48, 1055–1080 (1970)ADSCrossRefGoogle Scholar
  83. 83.
    Ridley, T., Beattie, D.a., Cockett, M.C.R., Lawley, K.P., Donovan, R.J.: A re-analysis of the vacuum ultraviolet absorption spectrum of I2, Br2, and ICl using ionization energies determined from their ZEKE-PFI photoelectron spectra. Phys. Chem. Chem. Phys. 4, 1398–1411 (2002). https://doi.org/10.1039/b109555m CrossRefGoogle Scholar
  84. 84.
    Venkateswarlu, P.: Emission bands of halogens. Proc. Indian Acad. Sci. 25, 119–132 (1947)Google Scholar
  85. 85.
    Petty, G., Tai, C., Dalby, F.W.: Nonlinear resonant photoionization in molecular iodine. Phys. Rev. Lett. 34, 1207–1209 (1975). https://doi.org/10.1103/PhysRevLett.34.1207 ADSCrossRefGoogle Scholar
  86. 86.
    Dalby, F.W., Petty-Sil, G., Pryce, M.H.L., Tai, C.: Nonlinear resonant photoionization spectra of molecular iodine. Can. J. Phys. 55, 1033–1046 (1977). https://doi.org/10.1139/p77-139 ADSCrossRefGoogle Scholar
  87. 87.
    Lehmann, K.K., Smolarek, J., Goodman, L.: Multiphoton resonance ionization bands in I2. J. Chem. Phys. 69, 1569 (1978). https://doi.org/10.1063/1.436729 ADSCrossRefGoogle Scholar
  88. 88.
    Bray, R.G., Hochstrasser, R.M.: Two-photon absorption by rotating diatomic molecules. Mol. Phys. 31, 1199–1211 (1976). https://doi.org/10.1080/00268977600100931 ADSCrossRefGoogle Scholar
  89. 89.
    Miller, J.C.: Multiphoton ionization of jet-cooled iodine. J. Phys. Chem. 91, 2589–2592 (1987). https://doi.org/10.1021/j100294a028 CrossRefGoogle Scholar
  90. 90.
    Wu, M., Johnson, P.M.: High lying gerade Rydberg states of molecular iodine. J. Chem. Phys. 90, 74–80 (1989). https://doi.org/10.1063/1.456469 ADSCrossRefGoogle Scholar
  91. 91.
    Bucksbaum, P.H., Bashkansky, M., Freeman, R.R., McIlrath, T.J., DiMauro, L.F.: Suppression of multiphoton ionization with circularly polarized coherent light. Phys. Rev. Lett. 56, 2590–2593 (1986). https://doi.org/10.1103/PhysRevLett.56.2590 ADSCrossRefGoogle Scholar
  92. 92.
    Huasheng, W., Ásgeirsson, J., Kvaran, Á., Donovan, R.J., Flood, R.V., Lawley, K.P., Ridley, T., Yencha, A.J.: Rotationally resolved (2 + 1) REMPI spectra of gerade Rydberg state of molecular iodine: The (v′ = 0,v″ = 1) band of the Dalby system. J. Mol. Struct. 293, 217–221 (1993). https://doi.org/10.1016/0022-2860(93)80053-X ADSCrossRefGoogle Scholar
  93. 93.
    Kvaran, Á., Wang, H., Ásgeirsson, J.: The Dalby system of iodine revisited: rotationally resolved (2 + 1) REMPI spectra of the rydberg state [2Pi1/2]c6s; 1 g of I2. J. Mol. Spectrosc. 163, 541–558 (1994). https://doi.org/10.1006/jmsp.1994.1046 ADSCrossRefGoogle Scholar
  94. 94.
    Williamson, A.D., Compton, R.N.: Sequentzal multiphoton ionizatxon spectroscopy: extension of a useful spectroscopic tool. Chem. Phys. Lett. 62, 295–299 (1979). https://doi.org/10.1016/0009-2614(79)80181-5 ADSCrossRefGoogle Scholar
  95. 95.
    Hoy, A.R., Jaywant, S.M., Brand, J.C.D.: A rotationally-resolved Rydberg transition of I2. Mol. Phys. 60, 749–759 (1987). https://doi.org/10.1080/00268978700100511 ADSCrossRefGoogle Scholar
  96. 96.
    Kvaran, A., Yencha, A.J., Kela, D.K., Donovan, R.J., Hopkirk, A.: Vibrationally resolved excitation functions for direct ion-pair (I+ + I) formation from photodissociation of I2. Chem. Phys. Lett. 179, 263–267 (1991). https://doi.org/10.1016/0009-2614(91)87035-A ADSCrossRefGoogle Scholar
  97. 97.
    Kvaran, Á., Wang, H., Jóhannesson, G.H., Yencha, A.J.: REMPI spectra of I2. The [2Π3/2],5d; 1g Rydberg state and interactions with ion pair states. Chem. Phys. Lett. 222, 436–442 (1994). https://doi.org/10.1016/0009-2614(94)00387-4 ADSCrossRefGoogle Scholar
  98. 98.
    Kvaran, Á., Jóhannesson, G.H., Wang, H.: Rotational perturbations in the (2 + 1) REMPI spectrum of the Rydberg state. Chem. Phys. 204, 65–75 (1996). https://doi.org/10.1016/0301-0104(95)00389-4 ADSCrossRefGoogle Scholar
  99. 99.
    Yencha, A.J., Cockett, M.C.R., Goode, J.G., Donovan, R.J., Hopkirk, A., King, G.C.: Threshold photoelectron spectroscopy of I2. Chem. Phys. Lett. 229, 347–352 (1994). https://doi.org/10.1016/0009-2614(94)01060-9 ADSCrossRefGoogle Scholar
  100. 100.
    Sjödin, A.M., Ridley, T., Lawley, K.P., Donovan, R.J.: Observation of a substantially-bound excited-core Rydberg state in I2 by optical triple resonance. Chem. Phys. Lett. 416, 64–69 (2005). https://doi.org/10.1016/j.cplett.2005.09.029 ADSCrossRefGoogle Scholar
  101. 101.
    Sjödin, A.M., Ridley, T., Lawley, K.P., Donovan, R.J.: Observation of a new high-energy, shallow-bound Rydberg state in I2 by optical triple resonance. Chem. Phys. Lett. 412, 110–115 (2005). https://doi.org/10.1016/j.cplett.2005.06.095 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergey Lukashov
    • 1
  • Alexander Petrov
    • 1
    • 2
  • Anatoly Pravilov
    • 1
  1. 1.Department of PhysicsSaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.National Research Centre “Kurchatov Institute”, B.P. Konstantinov Petersburg, Nuclear Physics InstituteGatchinaRussia

Personalised recommendations