Key Questions and Recent Research Advances on Harmful Algal Blooms in Eastern Boundary Upwelling Systems

  • Grant C. PitcherEmail author
  • Francisco G. Figueiras
  • Raphael M. Kudela
  • Teresa Moita
  • Beatriz Reguera
  • Manuel Ruiz-Villareal
Part of the Ecological Studies book series (ECOLSTUD, volume 232)


The Core Research Project (CRP) HABs in Upwelling Systems was developed as part of the implementation of the international science programme the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB). Progress in addressing eight key questions identified as a requirement for advancing our understanding of the ecology and oceanography of HABs in upwelling systems is reviewed. The considerable diversity of HAB species found in upwelling systems is considered to reflect the mosaic of multiple and shifting sub-habitats present within upwelling systems. In developing predictive capabilities, the need to consider species-specific behaviour with reference to the environmental and ecological parameters that characterize these sub-habitats is demonstrated. However, the limited spatial resolution of many numerical models has prevented incorporation of the complexity created at the small scale by physically driven niche diversification. Observations of opportunistic exploitation of multiple seeding options rather than depending on a single seeding mode further complicate prediction. Although contrasting nutrient strategies have been demonstrated for HABs in upwelling systems, attempts to determine species-specific nutrient requirements are few. The timing of HABs is controlled by wind stress fluctuations and buoyancy inputs at the seasonal, event and interannual scales, whereas the spatial distribution of HABs is controlled by mesoscale features that interrupt typical upwelling circulation patterns leading to the identification of HAB hotspots. Here cross-shelf and alongshore currents are important in the transport, accumulation and dispersion of HAB populations. With increasing availability of long-term data sets, changing trends in HABs related to climate are emerging. Owing to the strong physical control of HABs in upwelling systems, successful prediction as a possible outcome of the integration of real-time data into model systems as a component of operational forecasting of the ocean is most likely to be achieved, thus taking a critical step towards fulfilment of GEOHAB goals.



This is a contribution of the GEOHAB Core Research Project on HABs in Upwelling Systems.


  1. Álvarez-Salgado XA, Figueiras FG, Fernández-Reiriz MJ et al (2011) Control of lipophilic shellfish poisoning outbreaks by seasonal upwelling and continental runoff. Harmful Algae 10:121–129CrossRefGoogle Scholar
  2. Álvarez-Salgado XA, Labarta U, Fernández-Reiriz MJ et al (2008) Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful Algae 7:849–855CrossRefGoogle Scholar
  3. Amorim A, Nolasco R, Oliveira PB et al (2014) Seeding of Gymnodinium catenatum blooms in Iberian shelf waters. ICES CM 2014/H: 20Google Scholar
  4. Anderson CR, Kudela RM, Benitez-Nelson C et al (2011) Detecting toxic diatom blooms from ocean colour and a regional ocean model. Geophys Res Lett 38:L04603. Scholar
  5. Anderson CR, Siegel DA, Kudela RM et al (2009) Empirical models of toxigenic Pseudo-nitzschia blooms: potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 8:478–492CrossRefGoogle Scholar
  6. Barron JA, Bukry D, Field DB et al (2013) Response of diatoms and silicoflagellates to climate change and warming in the California current during the past 250 years and the recent rise of the toxic diatom Pseudo-nitzschia australis. Quat Int 310:140–154CrossRefGoogle Scholar
  7. Barton ED, Torres R, Figueiras FG et al (2016) Surface water subduction during a downwelling event in a semienclosed bay. J Geophys Res Oceans 121:7088–7107CrossRefGoogle Scholar
  8. Bravo I, Fraga S, Isabel Figueroa R et al (2010) Bloom dynamics and life cycle strategies of two toxic dinoflagellates in a coastal upwelling system (NW Iberian Peninsula). Deep Sea Res II 57:222–234CrossRefGoogle Scholar
  9. Díaz PA, Reguera B, Ruiz-Villarreal M et al (2013) Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Mar Drugs 11:2964–2981CrossRefPubMedPubMedCentralGoogle Scholar
  10. Díaz PA, Ruiz-Villarreal M, Velo-Suárez L et al (2014) Tidal and wind-event variability and the distribution of two groups of Pseudo-nitzschia species in an upwelling-influenced Ría. Deep Sea Res II 101:163–179CrossRefGoogle Scholar
  11. Díaz PA, Ruiz-Villarreal M, Pazos Y et al (2016) Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145–159CrossRefPubMedGoogle Scholar
  12. Escalera L, Reguera B, Moita T et al (2010) Bloom dynamics of Dinophysis acuta in an upwelling system: in situ growth versus transport. Harmful Algae 9:312–322CrossRefGoogle Scholar
  13. Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377Google Scholar
  14. Frolov S, Kudela RM, Bellingham JG (2013) Monitoring harmful algal blooms in the era of diminishing resources: a case study of the U.S. West Coast. Harmful Algae 21–22:1–12CrossRefGoogle Scholar
  15. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert P, Pitcher G (eds) SCOR and IOC, Baltimore and Paris, 86 ppGoogle Scholar
  16. GEOHAB (2003) Global ecology and oceanography of harmful algal blooms, implementation plan. Gentien P, Pitcher G, Cembella A et al (eds) SCOR and IOC, Baltimore and Paris, 36 ppGoogle Scholar
  17. GEOHAB (2005) Oceanography of harmful algal blooms, GEOHAB core research project: HABs in upwelling systems. Pitcher G, Moita T, Trainer V et al (eds) Global ecology and IOC and SCOR, Paris and Baltimore, 88 ppGoogle Scholar
  18. GEOHAB (2011) GEOHAB modelling: linking observations to predictions, a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds) IOC and SCOR, Paris and Newark, Delaware, 85 ppGoogle Scholar
  19. Giddings SN, MacCready P, Hickey BM et al (2014) Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J Geophys Res Oceans 119:2439–2461CrossRefGoogle Scholar
  20. Glibert PM (2016) Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30CrossRefPubMedGoogle Scholar
  21. Glibert PM, Heil CA, Wilkerson F et al (2018) Nutrients and HABs: dynamic kinetics and flexible nutrition. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp. 93–112Google Scholar
  22. Hickey BM, Trainer VL, Kosro PM et al (2013) A springtime source of toxic Pseudo-nitzschia cells on razor clam beaches in the Pacific Northwest. Harmful Algae 25:1–14CrossRefGoogle Scholar
  23. Howard MDA, Smith GJ, Kudela RM (2009) Phylogenetic relationships of yessotoxin-producing dinoflagellates, based on the large subunit and internal transcribed spacer ribosomal DNA domains. Appl Environ Microbiol 75:54–63CrossRefPubMedGoogle Scholar
  24. Howard MDA, Sutula M, Caron DA et al (2014) Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol Oceanogr 59:285–297CrossRefGoogle Scholar
  25. Joyce LB, Pitcher GC (2006) Cysts of Alexandrium catenella on the west coast of South Africa: distribution and characteristics of germination. Afr J Mar Sci 28:295–298CrossRefGoogle Scholar
  26. Kahru M, Mitchell BG, Diaz A et al (2008) MODIS detects a devastating algal bloom in Paracas Bay, Peru. EOS 85:465–472CrossRefGoogle Scholar
  27. Kana TM, Glibert PM (2016) On saturating response curves from the dual perspectives of photosynthesis and nitrogen acquisition. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer, Geneva, pp 93–104CrossRefGoogle Scholar
  28. Kudela R, Pitcher G, Probyn T et al (2005) Harmful algal blooms in coastal upwelling systems. Oceanography 18:184–197CrossRefGoogle Scholar
  29. Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and the legacy of the global ecology and oceanography of harmful algal blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49Google Scholar
  30. Lane JQ, Raimondi PT, Kudela RM (2009) Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. Mar Ecol Prog Ser 383:37–51CrossRefGoogle Scholar
  31. Lecher AL, Mackey K, Kudela R et al (2015) Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey Bay, CA. Environ Sci Technol 49:6665–6673CrossRefPubMedGoogle Scholar
  32. Lucas AJ, Pitcher GC, Probyn TA et al (2014) The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa. Deep Sea Res II 101:50–62CrossRefGoogle Scholar
  33. Lundholm N, Bates SS, Baugh KA et al (2012) Cryptic and pseudo-cryptic diversity in diatoms – with descriptions of Pseudo-nitzschia hasleana sp. nov. and P. fryxelliana sp. nov. J Phycol 48:436–454CrossRefPubMedGoogle Scholar
  34. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509Google Scholar
  35. Mateus M, Silva A, de Pablo H et al (2013) Using Lagrangian elements to simulate alongshore transport of harmful algal blooms. In: Mateus M, Neves R (eds) Ocean modelling for coastal management – case studies MOHID. IST Press, Lisbon, pp 235–247Google Scholar
  36. McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett 43:10366–10376CrossRefPubMedPubMedCentralGoogle Scholar
  37. McKibben SM, Peterson W, Wood AM et al (2017) Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci USA 114:239–244CrossRefPubMedGoogle Scholar
  38. Moita MT, Pazos Y, Rocha C et al (2016) Toward prediciting Dinophysis blooms off NW Iberia: a decade of events. Harmful Algae 53:17–32CrossRefPubMedGoogle Scholar
  39. Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11CrossRefPubMedGoogle Scholar
  40. Moore SK, Mantua NJ, Salathé EP (2011) Past trends and future scenarios for environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound shellfish. Harmful Algae 10:521–529CrossRefGoogle Scholar
  41. Moore SK, Mantua NJ, Trainer VL et al (2009) Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8:463–477CrossRefGoogle Scholar
  42. Oliveira PB, Nolasco R, Dubert J et al (2009) Surface temperature, chlorophyll and advection patterns during a summer upwelling event off central Portugal. Cont Shelf Res 29:759–774CrossRefGoogle Scholar
  43. Palma S, Mouriño H, Silva A et al (2010) Can Pseudo-nitzschia blooms be modeled by coastal upwelling in Lisbon Bay? Harmful Algae 9:294–303CrossRefGoogle Scholar
  44. Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59:660–673CrossRefGoogle Scholar
  45. Pérez FF, Padín XA, Pazos Y et al (2010) Plankton response to weakening of the Iberian coastal upwelling. Glob Chang Biol 16:1258–1267CrossRefGoogle Scholar
  46. Pinto L, Mateus M, Sliva A (2016) Modeling the transport pathways of harmful algal blooms in the Iberian coast. Harmful Algae 53:8–16CrossRefPubMedGoogle Scholar
  47. Pitcher GC (2012) Harmful algae – the requirement for species-specific information. Harmful Algae 14:1–4CrossRefGoogle Scholar
  48. Pitcher GC, Bernard S, Ntuli J (2008) Contrasting bays and red tides in the southern Benguela upwelling system. Oceanography 21:82–91CrossRefGoogle Scholar
  49. Pitcher GC, Figueiras FG, Hickey BM et al (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog Oceanogr 85:5–32CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pitcher GC, Joyce LB (2009) Dinoflagellate cyst production on the southern Namaqua shelf of the Benguela upwelling system. J Plankton Res 31:865–875CrossRefGoogle Scholar
  51. Pitcher GC, Neslon G (2006) Characteristics of the surface boundary layer important to the development of red tide on the southern Namaqua shelf of the Benguela upwelling system. Limnol Oceanogr 51:2660–2674CrossRefGoogle Scholar
  52. Raho N, Pizarro G, Escalera L et al (2008) Morphology, toxin composition and molecular analysis of Dinophysis ovum Schütt, a dinoflagellate of the “Dinophysis acuminata complex”. Harmful Algae 7:839–848CrossRefGoogle Scholar
  53. Reifel KM, Corcoran AA, Cash C et al (2013) Effects of a surfacing effluent plume on a coastal phytoplankton community. Cont Shelf Res 60:38–50CrossRefGoogle Scholar
  54. Rines JEB, McFarland MN, Donaghay PL et al (2010) Thin layers and species-specific characterization of the phytoplankton community in Monterey Bay, California, USA. Cont Shelf Res 30:66–80CrossRefGoogle Scholar
  55. Ruiz-Villarreal M, García-García LM, Cobas M et al (2016) Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia. Harmful Algae 53:40–52CrossRefPubMedGoogle Scholar
  56. Ryan JP, Gower JFR, King SA et al (2008) A coastal ocean extreme bloom incubator. Geophys Res Lett 35:L12602CrossRefGoogle Scholar
  57. Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16CrossRefGoogle Scholar
  58. Seegers BN, Birch JM, Marin R III et al (2015) Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnol Oceanogr 60:754–764CrossRefGoogle Scholar
  59. Seeyave S, Probyn TA, Pitcher GC et al (2009) Nitrogen nutrition in assemblages dominated by Pseudo-nitzschia spp., Alexandrium catenella and Dinophysis acuminata off the west coast of South Africa. Mar Ecol Prog Ser 379:91–107CrossRefGoogle Scholar
  60. Sekula-Wood E, Benitez-Nelson C, Morton S et al (2011) Pseudo-nitzschia and domoic acid fluxes in Santa Barbara Basin (CA) from 1993 to 2008. Harmful Algae 10:567–575CrossRefGoogle Scholar
  61. Shanks AL, Morgon SG, MacMahan J et al (2016) Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algae 55:172–178CrossRefPubMedGoogle Scholar
  62. Silva A, Pinto L, Rodrigues SM et al (2016) A HAB warning system for shelfish in Portugal. Harmful Algae 53:33–39CrossRefPubMedGoogle Scholar
  63. Sison-Mangus MP, Jiang S, Tran KN et al (2014) Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J 8:63–76CrossRefPubMedGoogle Scholar
  64. Smayda TJ (2002) Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1:95–112CrossRefGoogle Scholar
  65. Smayda TJ (2010) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism. Prog Oceanogr 85:53–70CrossRefGoogle Scholar
  66. Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J Plankton Res 23:447–461CrossRefGoogle Scholar
  67. Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr 85:92–107CrossRefGoogle Scholar
  68. Tatters AO, Flewelling LJ, Fu F et al (2013) High CO2 promotes the production of paralytic shellfish poisoning toxins by Alexandrium catenella from southern California waters. Harmful Algae 30:37–43CrossRefGoogle Scholar
  69. Tatters AO, Fu F, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One 7(2):e32116. Scholar
  70. Trainer VL, Pitcher GC, Reguera B et al (2010) The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog Oceanogr 85:33–52CrossRefGoogle Scholar
  71. Velo-Suárez L, Fernand L, Gentien P et al (2010) Hydrodynamic conditions associated with the formation, maintenance and dissipation of a phytoplankton thin layer in a coastal upwelling system. Cont Shelf Res 30:193–202CrossRefGoogle Scholar
  72. Velo-Suárez L, González-Gil S, Pazos Y et al (2014) The growth season of Dinophysis acuminata in an upwelling system embayment: a conceptual model based on in situ measurements. Deep Sea Res II 101:141–151CrossRefGoogle Scholar
  73. Velo-Suárez L, Reguera B, Garcés E et al (2009) Vertical distribution of division rates in coastal dinoflagellate Dinophysis spp. populations: implications for modeling. Mar Ecol Prog Ser 385:87–96CrossRefGoogle Scholar
  74. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford MA et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90Google Scholar
  75. Wyatt T (2014) Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res II 101:32–49CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Grant C. Pitcher
    • 1
    Email author
  • Francisco G. Figueiras
    • 2
  • Raphael M. Kudela
    • 3
  • Teresa Moita
    • 4
  • Beatriz Reguera
    • 5
  • Manuel Ruiz-Villareal
    • 6
  1. 1.Fisheries Research and DevelopmentCape TownSouth Africa
  2. 2.Instituto de Investigaciones Marinas (CSIC)VigoSpain
  3. 3.University of California Santa CruzSanta CruzUSA
  4. 4.Instituto Portugues do Mar e da Atmosfera (IPMA)LisboaPortugal
  5. 5.Instituto Español de Oceanografía, Centro Oceanográfico de VigoVigoSpain
  6. 6.Instituto Español de Oceanografía, Centro Oceanográfico de A CoruñaA CoruñaSpain

Personalised recommendations