Advertisement

Human Sperm Morphology Analysis using a Digital Holographic Microscope

  • Emil Fabian
  • Marzena Kamieniczna
  • Maciej Kurpisz
  • Ewa StachowskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

We used a digital holographic microscope (DHM) to analyse human sperm morphology. Length, width and thickness of the sperm cell head were determined by an operator, using the images produced by the software provided with the DHM. We developed an algorithm to replace part of the activities of the operator. This algorithm was written in the programming language R and the package EBImage. The algorithm produced similar results, while reducing the time needed from six hours to two when using a standard procedure.

Keywords

digital holography human sperm morphology image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kruger, T.F., DuToit, T.C., Franken, D.R., Acosta, A.A., Oehninger, S.C., Menkveld, R., Lombard, C.J. : A new computerized method of reading sperm morphology (strict criteria) is as efficient as technician reading. Fertil. Steril. 59(1), 202–209 (1993)Google Scholar
  2. 2.
    Word Health Organization : Reference values and semen nomenclature. In WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed., 223–225 Geneva: WHO Press (2010)Google Scholar
  3. 3.
    Sikka, S.C., Helstorm, W.J.G. : Current updates on labolatory techniques for the diagnosis of male reproductive failure. Asian Journal of Andrology, 18,392–401 (2016)Google Scholar
  4. 4.
    Coppola, G., Di Caprio, G., Wilding, M., Ferraro, P., Esposito, G., Di Matteo, L., Dale, R., Coppola, G., Dale, B. : Digital holographic microscopy for the evaluation of human sperm structure. Zygote 22(4), 446–454 (2014)Google Scholar
  5. 5.
    Pieper, R.J., Korpel, A. : Image processing for extended depth of field. Appl. Opt. 22, 1449–1453 (1983)Google Scholar
  6. 6.
    Schnars, U., Juptner,W. : Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)Google Scholar
  7. 7.
    Cuche, E., Marquet, P., Depeursinge, C. : Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999)Google Scholar
  8. 8.
    Schnars, U., Juptner, W. : Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101,(2002)Google Scholar
  9. 9.
    Guerrero, A., Carneiro, J., Pimentel, A., Wood, C.D., Corkidi, G., Darszon, A. : Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol. Hum. Reprod. 17, 511–523 (2011)Google Scholar
  10. 10.
    Di Caprio, G., Ferrara, M.A., Micco, L., Merola, F., Memmolo, P., Ferraro, P., Coppola, G. : Holographic imaging of unlabelled sperm cells for semen analysis: a review. J. Biophotonics 8(10), 779–789 (2015)Google Scholar
  11. 11.
    Mico, V., Zalevsky, Z., Ferreira, C., Garcia, J. : Superresolution digital holographic microscopy for three dimensional samples. Opt. Exp. 16, 19260–19270 (2008)Google Scholar
  12. 12.
    Coppola, G., Di Caprio, G.,Gioffré, M., Puglisi, R., Balduzzi, D., Galli, A., Micco, L., Paturzo, M., Grilli, S., Finizio, A., Ferraro, P. : Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction. Opt. Lett. 35, 3390–3392 (2010)Google Scholar
  13. 13.
    Micco, L., Finizio, A., Puglisi, R., Balduzzi, D., Galli, A., Ferraro, P. : Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization. Biomed. Opt. Express 2(2), 331–344 (2011)Google Scholar
  14. 14.
    Memmolo, P., Di Caprio, G., Distante, C., Paturzo, M., Puglisi, R., Balduzzi, D., Galli, A., Ferraro, P. : Morphological analysis framework of living cells by digital holography. Opt. Exp. 19, 23215–23226 (2011)Google Scholar
  15. 15.
    Crha, I., Zakova, J., Huser, M., Ventruba, P., Pohanka, M. : Digital holographic microscopy in human sperm imaging. J. Assist. Reprod. Genet. 28, 725–729 (2011)Google Scholar
  16. 16.
    Iglesias, I., Vargas-Martin, F. : Quantitative phase microscopy of transparent samples using a liquid crystal display. J. Biomedical. Optics 18(2), 026015 (2013)Google Scholar
  17. 17.
    Girshovitz, P., Shaked, N.T. : Doubling the field of view in off-axis low-coherence interferometric imaging. Light Sci. Appl. 3, e151:DOI:10.1038/lsa.2014.32 (2014)Google Scholar
  18. 18.
    https://www.R-project.org/ (accessed 22 May 2017)
  19. 19.
    https://www.lynceetec.com/ (accessed 20 May 2017)
  20. 20.
  21. 21.
    Pau, G., Fuchs, F., Sklyar, O., Boutros, M., Huber, W. : EBImage–an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 978–981 (2010)Google Scholar
  22. 22.
    Haifler, M., Girshovitz, P., Band, G., Dardikman, G., Madjar, I., Shaked, N. T. : Interferometric phase microscopy for label–free morphological evaluation of sperm cells. Andrology 104, No. 1 43–47 (2015)Google Scholar
  23. 23.
    Coppola, G., Di Caprio, G., Wilding, M., Ferraro, P.,Esposito, G.,DiMatteo, L., et al. : Digital holographic microscopy for the evaluation of human sperm structure. Zygote 22, 446–454, (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emil Fabian
    • 1
  • Marzena Kamieniczna
    • 2
  • Maciej Kurpisz
    • 2
  • Ewa Stachowska
    • 1
    Email author
  1. 1.Department of Metrology and Measurement Systems, Institute of Mechanical Technology, Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznańPoland
  2. 2.Institute of Human Genetics Polish Academy of SciencePoznańPoland

Personalised recommendations