Advertisement

Gender recognition using artificial neural networks and data coming from force plates

  • Jakub Krzysztof GrabskiEmail author
  • Tomasz Walczak
  • Martyna Michałowska
  • Magdalena Cieślak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

The paper deals with a problem of automatic gender recognition based on parameters obtained from the force plates. The ground reaction force is recorded and some selected parameters of the curve are calculated. These parameters are used in this study as inputs to artificial neural network which should recognize if the individual is male or famale. The results of recognition are satisfactory and presented in the paper.

Keywords

gender recognition human gait ground reaction force artificial neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Inman, V.T., Ralston, H.J., Todd, F.: Human Walking, Williams & Wilkins (1981).Google Scholar
  2. 2.
    Payton, C.J., Barlett, R.M. (eds.): Biomechanical Evaluation of Movement in Sport and Exercise, Routledge. Taylor & Francis Group, London and New York (2008).Google Scholar
  3. 3.
    Perry, J., Burnfield, J.M.: Gait Analysis. Normal and Pathological Function, SLACK Incorporated (2010).Google Scholar
  4. 4.
    Anil, J., Ross, A.A., Nandakumar, K.: Introduction to Biometrics, Springer (2011).Google Scholar
  5. 5.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition, Springer (2009).Google Scholar
  6. 6.
    Dantcheva, A., Velardo, C., D’Angelo, A., Dugelay, J.-L.: Bag of Soft Biometrics for Person Identification: new trends and challenges, Multimed Tools Appl 51, 739ÂŰ 777 (2010).Google Scholar
  7. 7.
    Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: An application of chain code-based local descriptor and its extension to face recognition, Pattern Recogn. 65, 26–34 (2017).Google Scholar
  8. 8.
    Thalji, Z., Alsmadi, M.: Iris recognition using robust algorithm for eyelid, eyelash and shadow avoiding, World Appl Sci 25, 858–865 (2013).Google Scholar
  9. 9.
    Mathivanan, B., Palanisamy, V., Selvarajan, S.: A hybrid model for human recognition system using hand dorsum geometry and finger-knuckle-print, Journal of Computer Science 8, 1814–1821 (2012).Google Scholar
  10. 10.
    Steffi Vanthana, P., Muthukumar, A.: Multimodal biometrics authentication using iris and palmprint with SVM classifier, International Journal of Applied Engineering Research 10, 16271–16277 (2015).Google Scholar
  11. 11.
    Zhou, P., Tian, F., Ren, Y., Shang, Z.: Systematic classification and analysis of themes in protein-DNA recognition, J Chem Inf Model 50, 1476–1488 (2010).Google Scholar
  12. 12.
    Yan, X., Kang, W., Deng, F., Wu, Q.: Palm vein recognition based on multi-sampling and feature-level fusion, Neurocomputing 151, 798–807 (2015).Google Scholar
  13. 13.
    13. ÂŽwiebocka-WiÃłk, J.: Gender recognition based on speakerŠs voice analysis, Adv Intel Syst Comput 539, 80–85 (2017).Google Scholar
  14. 14.
    Damayanti, F., Rachmad, A.: Recognizing gender through facial image using Support Vector Machine, J Theor Appl Inf Technol 88, 607–612 (2016).Google Scholar
  15. 15.
    Wang, S., Gao, Z., He, S., He, M., Ji, Q.: Gender recognition from visible and thermal infrared facial images, Multimed Tools Appl 75, 8419–8442 (2016).Google Scholar
  16. 16.
    Walczak, T., Grabski, J.K., Grajewska, M., Michałowska, M.: Application of artificial neural networks in man’s gait recognition, In: Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues. Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM), Kleiber, M., Burczyński, T., Wilde, K., Górski, J., Winkelmann, K., Smakosz, Ł. (eds.), CRC Press, Taylor & Francis Group, London (2016), 591–594.Google Scholar
  17. 17.
    Walczak, T., Grabski J.K., Cieślak M., Michałowska M.: The recognition of human by the dynamic determinants of the gait with use of ANN. In: Springer Proceedings in Mathematics and Statistics 181, Dynamical Systems: Modelling, Awrejcewicz, J. (ed.), Springer (2016), 375–385.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jakub Krzysztof Grabski
    • 1
    Email author
  • Tomasz Walczak
    • 1
  • Martyna Michałowska
    • 1
  • Magdalena Cieślak
    • 1
  1. 1.Institute of Applied Mechanics, Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznańPoland

Personalised recommendations