Mechanical characterization of biodegradable materials used in surgery

  • Angela AndrzejewskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)


Synthetic and natural polymeric materials are widely used in biomedical and pharmaceutical industries. They are used for manufacturing pharmaceutical formulations, drug delivery or scaffolds for tissue engineering. The physicochemical properties of this polymers strongly depend on the percentage of the crystalline phase. In medical application are used amorphous form of biomaterials. In comparison to a crystalline form of the same material, they are characterized by greater material properties like: toughness, fatigue strength and hygroscopicity. Due to the low proportion of the crystalline phase, they have much lower modulus of elasticity, yield strength, tensile strength and hardness. The application of these materials in new medical applications should be preceded by gaining knowledge of changing mechanical properties during hydrolytic degradation. The study used amorphous form of biodegradable polimer and three degrading solutions: distilled water, Phosphate Buffered Saline and sodium chloride 0.9%. The results of the conducted tests can be used to determine the effect of medium composition on the mechanical properties of the polymer. Also, they can indicate the optimal degrading medium for further testing.


Amorphous biomaterials Biodegradable polymers PLA Mechanical properties Hydrolytic degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrzejewska A., Topoliński T.: Polimery biodegradowalne do zastosowań biomedycznych. Postępy w inżynierii mechanicznej. 6(3), 5–12 (2015)Google Scholar
  2. 2.
    Bartkowiak-Jowsa M., Będziński R., Kozłowska A., Filipiak J., Pezowicz C.: Mechanical, rheological, fatigue, and degradation behavior of PLLA, PGLA and PDGLA as materials for vascular implants. Meccanica. 48, 721–731 (2013)Google Scholar
  3. 3.
    Bélan F., Belleger V., Mortaigne B.: Hydrolytic stability of unsaturated polyester networks with controlled chain ends. Polymer Degradation and Stability. 56, 93–102 (1997)Google Scholar
  4. 4.
    Buijs G.J., Houwen E.B., Stegenga B., Verkere G.J., Bos R.R.M: Mechanical Strenght and Stiffness of the Biodegradable Sonic Weld Rx Osteofixation System. Journal of Oral and Maxillofacial Surgery. 67, 782–787 (2009)Google Scholar
  5. 5.
    Dłuska E., Markowska-Radomska A.: Analiza mechanizmów uwalniania składnika aktywnego z utrwalonych do postaci mikrosfer emulsji wielokrotnych. Inżynieria i Aparatura Chemiczna. 49(1), 33–34 (2010)Google Scholar
  6. 6.
    Farrar D.F., Gilson R.K.: Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials. 23, 3905–3912 (2002)Google Scholar
  7. 7.
    Gautier L., Mortaigne B., Bellenger V., Verdu J.: Osmotic cracking nucleation in hydrothermal-aged polyester matrix. Polymer. 41, 2481–90 (2000)Google Scholar
  8. 8.
    Milewski K., Tajstra M.: Stenty bioresorbowalne âǍŤ aktualny stan wiedzy. Folia Cardiologica Excerpta. 7, 213–219 (2012)Google Scholar
  9. 9.
    Olewnik-Kruszkowska E.: Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polymer Degradation and Stability. 129, 87–95 (2016)Google Scholar
  10. 10.
    Pantani R., Sorrentino A.: Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polymer Degradation and Stability. 98, 1089–1096 (2013)Google Scholar
  11. 11.
    Roethera J.A., Boccaccinib A.R., Henchb L.L., Maquetc V., Gautierc S., Jerome R.: Development and in vitro characterisation of novel bioresorbable and Bioactive composite materials based on polylactide foams and Bioglasss for tissue engineering applications. Biomaterials. 23, 3871–3878 (2002)Google Scholar
  12. 12.
    Saylor D.M., Richardson D.C., Dair B.J., Pollack S.K.: Osmotic cavitation of elastomeric intraocular lenses. Acta Biomaterialia. 6, 1090-âǍŞ1098 (2010)Google Scholar
  13. 13.
    Väänänen P., Nurmi J.T., Lappalainen R., Jank S.: Fixation properties of a biodegradable “freeform” osteosynthesis plate with screws with cut-off screw heads: Biomechanical evaluation over 26 weeks. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 107, 462–468 (2009)Google Scholar
  14. 14.
    Vieira A.C., Guedes R.M., Tita V.: Constitutive modeling of biodegradable polymers: Hydrolytic degradation and time-dependent behavior. International Journal of Solid and Structures. 51, 1164–1174 (2014)Google Scholar
  15. 15.
    Vieira A.C., Vieira J.C., Guedes R.M., Marques A.T.: Degradation and Viscoelastic properties of PLA-PCL, PGA-PCL, PDO and PGA fibers. Materials Science Forum. 636-37(1), 825–832, (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UTP University of Science and Technology in BydgoszczBydgoszczPoland

Personalised recommendations