Advertisement

Efect Of Sterylization And Long-Term Exposure To Artificial Urine On Corrosion Behaviour Of Metallic BiomaterialsWith Poly(Glikolide-Co-Kaprolactone) Coatings

  • Wojciech KajzerEmail author
  • Joanna Jaworska
  • Katarzyna Jelonek
  • Janusz Szewczenko
  • Katarzyna Nowińska
  • Anita Kajzer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

Novel implants based on metallic alloys (stainless steel 316 LVM, Ti6Al4V ELI and Ti6Al7Nb alloys) prepared by self-developed method of surface modification are presented in this study. Implants were coated with biodegradable and bioresorbable layer of poly(glycolide-co-caprolactone). Next, half of the perpetrated specimens was subjected to radiation sterilization. After that, samples were divided in to two groups: I - initial state (samples with sterilized “S” and nonsterilized polymer “NS”; II - samples with sterilized “S90” and non-sterilized polymer coating “NS90” after 90 days of exposure to artificial urine. As a result of the conducted research, it was found that after long-term exposure the polymer degradation was even and inconsiderable. However, reduction of adhesion and finally, retraction of the coatings on the titanium alloys has been observed. Moreover, the influence of sterilization process on the kinetics of metallic ion release to corrosion environment for all metallic biomaterials has been observed.

Keywords

artificial urine corrosion resistance metallic biomaterial polymer coatings poly(glycolide-co-caprolactone) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borkowski A.: Urologia: Podręcznik dla studentów medycyny. PZWL, Warszawa (2008)Google Scholar
  2. 2.
    Jacobse S.M., Strickler D.J. Mobley H.L., Shirtliff M.E.: Complicated catheter–assiociated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbil Rev 21(1), 26–59 (2008)Google Scholar
  3. 3.
    Shaw G.L., Choong S.K., Fry C.: Ecrustation of biomaterials in the urinary tract. Urol Res 33(1), 17–22 (2005)Google Scholar
  4. 4.
    Ostrowska K., Strzelczyk A., Różalski A., Strączek P.: Biofilm bakteryjny jako przyczyna zakażeń układu moczowego — mikroorganizmy patogenne, metody prewencji i eradykacji. Postepy HigMed Dosw 67, 1027–1033 (2013)Google Scholar
  5. 5.
    Klimek L., Różański W., Jabłonowski Z., Sosnowski M., Kliś R.: Obserwacje zmian mikroskopowych cewników typu Double J w zależności od czasu utrzymywania ich w drogach moczowych. Inzynieria Biomaterialow 43-44, 36–39 (2005)Google Scholar
  6. 6.
    Kajzer A., KajzerW., Gołombek K., Knol M., Dzielicki J.,WalkeW.: Corrosion resistance, eis and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Archives of Metallurgy and Materials, 61 2a, 767–770 (2016)Google Scholar
  7. 7.
    Szewczenko, J.; Marciniak, J.; Kajzer, W.; Kajzer A.: Evaluation of corrosion resistance of titanium alloys used for medical implants. Archives of Metallurgy and Materials. 61 2 695–699 (2016)Google Scholar
  8. 8.
    M. Bartmański, B. Świeczko-Źurek: Project of hip joint endoprosthesis for an individual patient with materials selection, Advances In Materials Science, 15, 1 (43), 30–36 (2015) Solid State Phenomena Corrosion and Surface Engineering 227 491–494 (2015)Google Scholar
  9. 9.
    Basiaga M., Paszenda Z., Karasiński P., Kajzer A., Walke W.: Mechanical Properties of Anodically Oxidized cpTi and Ti-6Al-7Nb Alloy Applications of Computational Tools in Biosciences and Medical Engineering. Adv Struct Mater 71. Chapter 8 Springer 123–132 (2015)Google Scholar
  10. 10.
    Roe D., Karandikar B., Bonn–Savage N., Gibbins B., Roullet J.B.,: Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61, 869–876 (2008)Google Scholar
  11. 11.
    Trupti A., Lauserpina C., Shanta M.: Efficacy of a silicone urinary catheter impregnated with chlorhexidine and triclosan against colonization with proteus mirabilis and other uropathogens. Infect Control Hosp Epidemiol 28, 596–598 (2007)Google Scholar
  12. 12.
    Hachem R., Reitzel R., Borne A., Jiang Y., Tinkey P., Uthamanthil R., Chandra J., Ghannoum M. Raad I.: Novel antiseptic urinary catheters for prevention of urinary tract infections: correlation of in vivo and in vitro test results. Antimicrob Agents Chemother 53, 5145–5149 (2009)Google Scholar
  13. 13.
    Lee G., Marathe S., Sabbagh S., Crisp J.: Thermo-expandable intra-prostatic stent in the treatment of acute urinary retention in elderly patients with significant comorbidities. Int Urol Nephrol 37, 501–504 (2005)Google Scholar
  14. 14.
    Opalko F.J., Adria J.H., Khanc S.R.: Heterogeneous nucleation of calcium oxalate trihydrate in artificial urine by constant composition. J Cryst Growth 181, 410–417 (1997)Google Scholar
  15. 15.
    Szewczenko J., Kajzer W., Grygiel-Pradelok M., Jaworska J., Jelonek K., Nowińska K., Gawliczek M., Libera M., Marcinkowski A., Kasperczyk J.: Corrosion resistance of PLGA-coated biomaterials. Acta of Bioengineering and Biomechanics 19 1 173–179 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Wojciech Kajzer
    • 1
    Email author
  • Joanna Jaworska
    • 3
  • Katarzyna Jelonek
    • 3
  • Janusz Szewczenko
    • 1
  • Katarzyna Nowińska
    • 2
  • Anita Kajzer
    • 1
  1. 1.Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Institute of Applied Geology, Faculty of Mining and GeologySilesian University of TechnologyGliwicePoland
  3. 3.Centre of Polymer and Carbon Materials of the Polish Academy of Sciences ZabrzeZabrzePoland

Personalised recommendations