Influence of Calcination Temperatures on the Morphology and Specific Surface Area Development of ZrO2-CeO2-Y2O3-Al2O3 Powders Obtained via Sol-Gel Route

  • Damian S. NakoniecznyEmail author
  • Zbigniew K. Paszenda
  • Justyna Majewska
  • Sabina Drewniak
  • Wojciech Bogacz
  • Magdalena Antonowicz
  • Agata Sambok
  • Cezary Krawczyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)


BACKGROUND: Doped with metal oxide, zirconia is one of the most currently used ceramics for making a wide range of all-ceramic restorations in dental prosthetics. Its use entails very good mechanical properties and the possibility of obtaining a desirable aesthetic effect of manufactured prostheses.

OBJECTIVE: The main purpose/aim of this study was to investigate the influence of calcination temperature on the morphology and specific surface area development of a ZrO2 – CeO2 – Y2O3 – Al2O3 powder system obtained with a humidfree sol-gel process.

METHODS: Powders were obtained by the sol-gel method in an inert gas atmosphere at ambient temperature using, for this purpose, zirconium n-propoxide. Morphology was examined by scanning electron microscopy (SEM), and specific surface area was investigated with full-adsorption isotherms in nitrogen with a Brunauer-Emmett-Teller model (BET).

RESULTS: Depending on the calcination temperature, different morphologies and surface areas were observed.With an increase in temperature, grain growth was observed.

CONCLUSIONS: The influence of calcination temperature on morphology and specific surface area of the as-obtained powders was clearly evidenced.


zirconia prosthetic dentistry sol-gel calcination morphology BET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferrari, M., Vichi, A., Zarone, F.: Zirconia abutments and restorations: from laboratory to clinical investigations. Dental Materials, 31,3, e73–e76 (2015)Google Scholar
  2. 2.
    Chevalier, J., Gremillard, L., Virkar, AV., Clarke, DR.: The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. Journal of American Ceramic Society, 92,9, 1901–1920 (2009)Google Scholar
  3. 3.
    Fabbri, P., Piconi, C., Burresi, E., Maganami, G., Mazzanti, F., Mingazzini, C.: Lifetime estimationof a zirconia–alumina composite for biomedical applications. Dental Materials, 30, 138–142 (2014)Google Scholar
  4. 4.
    Alao, A., Stoll, R., Song, X–F., Miyazaki, T., Hotta, T., Shibata, Y., Yin, L.: Surface quality of yttrium-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes. Journal of Mechanical Behavior of Biomedical Materials, 65, 102–116 (2017)Google Scholar
  5. 5.
    Tredici, IG., Sebastiani, M., Massimi, F., Bemporad, E., Resimini, A., Merlati, G., Anslemi–Tamburni, U.: Low temperature degradation resistant nanostructured yttrium-stabilized zirconia for dental applications. Ceramics International, 42,7, 8190–8197 (2016)Google Scholar
  6. 6.
    Guo, X.: Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules. Chemistry Materials, 16, 3988–3994 (2004)Google Scholar
  7. 7.
    Guo, X., Zhang, Z.: Grain size dependent grain boundary defect structure: case of doped zirconia. Acta Materialia, 51, 2539–2547 (2003)Google Scholar
  8. 8.
    Guo, X.: Hydrothermal degradation mechanism of tetragonal zirconia. Journal of Material Science, 36, 3737–3744 (2001)Google Scholar
  9. 9.
    Gorban, O., Synyakina, S., Volkova, G., Gorban, S., Konstantinova, T., Lyubchik, S.: Formation of metastable tetragonal zirconia nanoparticles: Competitive influence of the dopants and surface state. Journal of Solid State Chemistry, 232, 249–255 (2015)Google Scholar
  10. 10.
    Hallmann, L., Ulmer, P., Reusser, E., Louvel, M., Hammerle, ChHF.: Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZPzirconia. Journal of The European Ceramic Society, 32, 16, 4091–4104 (2012)Google Scholar
  11. 11.
    Nakoniecznny, DS., Zi˛ebowicz, A., Paszenda, ZK., Krawczyk, C.: Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications-a review. Biocybernetics and Biomedical Engineering, in press (2016)Google Scholar
  12. 12.
    Ugas–Carrón, R., Sittner, F., Yekehtaz, M., Flege, S., Brötz, J., Ensinger, W.: Influence of stabilizing agents on structure and protection performance of zirconium oxide films. Surface Coatings. Technology, 204, 2064–2067 (2010)Google Scholar
  13. 13.
    Kern, F.: Ytterbia–neodymia–costabilized TZP –Breaking the limits of strength-toughness correlations for zirconia?. Journal of European Ceramic Society, 33, 965–973 (2013)Google Scholar
  14. 14.
    Dasari, HP., Ahn, JS., Ahn, K., Park, SY., Hong, J., Kim, H., Yoon, KJ., Son, JW., Lee, HW., Lee, JH.: Synthesis, sintering and conductivity behavior of ceria–doped Scandia–stabilized zirconia. Solid State Ionics, 264, 103–109 (2014)Google Scholar
  15. 15.
    del Monte, F., Larsen, W., Mackenzie, JD.: Stabilization of tetragonal ZrO 2 in ZrO 2 –SiO 2 binary oxides. Journal of American Ceramic Society, 83, 3, 628–634 (2000)Google Scholar
  16. 16.
    Gionea, A., Andronescu, E., Voicu, G., Bleotu, C., Surdu, V-A.: Influence of hot isostatic pressing on ZrO 2-CeO dental ceramics properties. International Journal of Pharmaceutics, 510, 2, 439–448 (2016)Google Scholar
  17. 17.
    Vasylkiv, O., Brodianska, H., Sakka, Y., Demirsky, D.: Flash spark plasma sintering of ultrafine yttrium-stabilized zirconia ceramics. Scripta Materialia, 121, 32–36 (2016)Google Scholar
  18. 18.
    Surzhikov, AP., Frangulyan, TS., Ghyngazov, SA., Vasilev, IP., Chermyaskii, AV.: Ceramics International, 42, 12, 13888–13892 (2016)Google Scholar
  19. 19.
    Ng, CK., Ramesh, S., Tan, CY., Muchta, A., Rao, Somalu, M.: Microwave sintering of ceriadoped Scandia stabilized zirconia as an electrolyte for solid oxide fuel cell. International Journal of Hydrogen Energy, 41,32, 14184–14190 (2016)Google Scholar
  20. 20.
    Scherrer, SS., Cattani-Lorente, M., Yoon, S., Karvonen, L., Pokrant, S., Rothburst, F., Kuebler, J.: Post-hot isostatic pressing: A Healing treatment for process related defects and laboratory grinding damage of dental zirconia?. Dental Materials, 29, 9, e180–e190 (2013)Google Scholar
  21. 21.
    Nakonieczny, DS., Paszenda, ZK., Drewniak, S., Radko, T., Lis, M.: ZrO 2 –CeO 2 ceramic powders obtained from a sol-gel process using acetylacetone as a chelating agent for potential application in prosthetic dentistry. Acta of Bioengineering and Biomechanics, 2016, 3, 18), DOI:  10.5277/ABB-00476-2015-3 (2016)
  22. 22.
    Nakonieczny, DS., Paszenda, ZK., Basiaga, M., Drewniak, S., Bogacz, W., Podwórny, J., Radko, T.: Phase composition and morphology characteristics of ceria-stabilized zirconia powders obtained via sol-gel method with various pH conditions. Acta of Bioengineering and Biomechanics, 2, 19, article in press (2017)Google Scholar
  23. 23.
    Nakonieczny, DS., Paszenda, ZK., Drewniak, S., Bogacz,W., Radko, T., Krawczyk, C.: Experimental investigation of particle size distribution and morphology of alumina-yttrium-ceriazirconia powders obtained via sol-gel route. Journal of Materials Science, unpublished yet material.Google Scholar
  24. 24.
    Mamana, N., Díaz-Parralejo, A., Ortiz, AL., Sanchez-Bajo, F., Caruso, R.: Ceramics International, 40, 6421–6426 (2014)Google Scholar
  25. 25.
    Sing, KSW.: Advances in Colloid and Interface Science. 76–77, 3–11 (1998)Google Scholar
  26. 26.
    IUPAC Recommendations. Pure and Applied Chemistry, 57, 603 (1985)Google Scholar
  27. 27.
    IUPAC Recommendations. Pure and Applied Chemistry, 66, 1739 (1994)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Damian S. Nakonieczny
    • 1
    Email author
  • Zbigniew K. Paszenda
    • 1
  • Justyna Majewska
    • 2
  • Sabina Drewniak
    • 3
  • Wojciech Bogacz
    • 4
  • Magdalena Antonowicz
    • 1
  • Agata Sambok
    • 1
  • Cezary Krawczyk
    • 5
  1. 1.Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Department of Biosensors and Biomedical Signal Processing, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  3. 3.Department of OptoelectronicsSilesian University of TechnologyGliwicePoland
  4. 4.Department of Chemical Engineering and Process Design, Faculty of ChemistrySilesian University of TechnologyGliwicePoland
  5. 5.Department of Dental TechnologyMedical College of ZabrzeZabrzePoland

Personalised recommendations