The influence of implantation on mechanical degradation of the nanotubular oxide layer on titanium screws

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 623)

Abstract

The aim of this study was to analyse the damage to the oxide layer: passive and nanotubular, covering screws made of titanium alloy Ti6Al4V ELI after implantation. Self-cutting cervical screws were modified by anodizing in an electrolyte solution of ethylene glycol with the addition of 1% DI water and 0.6% wt. NH4F . The microscopic and electrochemical analyses were performed by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and open circuit potential (OCP) measurements before and after screw implantation into pig cervical vertebrae. Obtained results confirm the possibility of nanotubular oxide layer (TNT) formation on Ti6Al4V ELI screws and no significant damage due to implantation was observed for the nanotubular oxide layer.

Keywords

Titania nanotubes Ti6Al4V ELI screw implantation degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirmanidou, Y., Sidira, M., Drosou, ME., Bennani, V., Bakopoulou, A., Tsouknidas, A., Michailidis, N., Michalakis, K.: New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A Review. BioMed Res. Int. 2016, 1–21 (2016)Google Scholar
  2. 2.
    Mandracci, P., Mussano, F., Rivolo, P., Carossa, S.: Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coating. 6, 7, 1–22 (2016)Google Scholar
  3. 3.
    Niinomi M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. 243, 231–236 (1998)Google Scholar
  4. 4.
    Gomes, C., Moreira, L., Santos, V., Ramos, A., Lyon, J., Soares P., Santos.: Assessment of the genetic risks of a metallic alloy used in medical implants. Genet. Mol. Biol. 34, 1, 116–121 (2011)Google Scholar
  5. 5.
    Stan, M., Memet, I., Fratila, C., Krasicka-Cydzik, E., Roman, I., Dinischiutu, A.: Effects of titanium-based nanotube films on osteoblast behaviorin vitro. J. Biomed. Mater. Res. 103A, 48–56 (2015)Google Scholar
  6. 6.
    Kaczmarek-Pawelska, A., Krasicka-Cydzik, E.: Functionalized nanotubular oxide layer on Ti6Al4V as a regulator and biosensor of bone tissue remodeling. ASME. 73, 2, 53–61 (2015)Google Scholar
  7. 7.
    Kiel, M., Szewczenko, J., Marciniak, J., Nowinska, K.: Electrochemical properties of Ti-6Al-4V ELI alloy after anodization. E. PiÄ ´ Ztka and J. Kawa (Eds.): ITIB 2012, LNCS 7339, 369–378 (2012)Google Scholar
  8. 8.
    Arkusz, K., Krasicka-Cydzik, E.: Influence of thermal modification and morphology of TiO2 nanotubes on their electrochemical properties for biosensors applications. J. Nanosci. Nanotechnol. (to appear)Google Scholar
  9. 9.
    Mardare E., Benea L., Celis J.P.: Novel nano-TiO2 layer preparation on Ti6Al4V support alloy and their characterization Dig. J. Nanomater. Biostruct. 3, 933–939 (2012)Google Scholar
  10. 10.
    Narayanan R., Seshadri S.K.: Phosphoric Acid anodization of Ti6Al4V- structural and corrosion aspects. Corros. Sci. 49, 542–558 (2007)Google Scholar
  11. 11.
    Shivaram, A., Bose, S., Bandyopadhyay, A.: Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 59, 508–18 (2016)Google Scholar
  12. 12.
    Roy, P., Berger, S., Schmuki, P.: TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904–2939 (2011)Google Scholar
  13. 13.
    Santana Jimenez, Y., Tejera Gil, M., Torrado Guerra, M., Baltes, L., Mirza Rosca, J.: Interpretation of open circuit potential of two titanium alloys for a long time immersion in physiological fluid. Bull. Transilv. Univ. Brasov. 2, 51 197–204 (2009)Google Scholar
  14. 14.
    Manama, N., Harunb, W., Shrib, D., Ghanib, S., Kurniawanc, T., Ismaild, M., Ibrahime, M.: Study of corrosion in biocompatible metals for implants: A review. J. Alloy. Compd. 701, 698–715 (2017)Google Scholar
  15. 15.
    Henderson, M.: A surface perspective on self-diffusion in rutile TiO2. Surf. Sci. 419, 2, 174–187 (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Biomedical Engineering Division, Department of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland

Personalised recommendations